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Abstract—Although quantitative ultrasound imaging based 
on backscattering coefficients has proven potential for tissue 
characterization, the scattering models used in most studies 
assume distributions of identical scatterers. However, actual 
tissues may exhibit multiple levels of spatial scales. Therefore, 
the objective of the present study is to analyze the effects of 
scatterer size distributions when using a fluid-sphere model 
for estimating values of effective scatterer diameter (ESD) 
through both simulations and experiments. For simulations, 
ESD estimates were obtained at several analysis frequencies 
between 1 and 40 MHz from populations of scatterers with 
diameters ranging between 25 and 100 μm, 25 and 50 μm, 50 
and 100 μm, and 50 and 75 μm. For sufficiently high analysis 
frequencies, the ESD estimates obtained through simulations 
were approximately inversely proportional to frequency and 
mostly independent of the underlying scatterer size distribu-
tion. Asymptotic expressions for the expected ESD estimates 
at low- and high-frequency limits were derived. Experiments 
were conducted using two gelatin phantoms with contrast 
agent spheres ranging in diameter from 30 to 140 μm and 70 
to 140 μm, and 5-, 7.5-, 10-, and 13-MHz focused transducers. 
Not only was the asymptotic behavior of ESD versus frequency 
estimates observed experimentally, but also the experimental 
ESD estimates using the 10- and 13-MHz transducers were 
lower than the smallest scatterers present in the second phan-
tom. These results may have a direct impact on how scatterer 
size estimates corresponding to specimens with different sub-
resolution spatial scales should be interpreted.

I. Introduction

Quantitative ultrasound imaging based on backscat-
tering coefficients (referred to in this work as QUS) 

has proven potential for tissue characterization. Experi-
mental work in the literature includes explorations of 
ocular lesions [1], prostate [2], kidney [3], liver [4], and 
rat mammary tumors [5], among others. Microstructural 
information is obtained by assuming that a large number 
of scatterers per resolution cell exist and that incoherent 
scattering dominates the backscattered power spectrum. 
If multiple scattering is neglected, the backscattered spec-
trum estimates can be fitted to a parametric model that 
represents how a single scatterer radiates sound as a func-

tion of frequency. The property of interest in this study is 
the effective scatterer diameter (ESD), which represents 
the typical size of unresolvable scatterers within the in-
sonified region.

Although many efforts have been conducted to improve 
the performance of ESD estimation, including spectral 
smoothing [6], angular compounding [7], and attenuation 
estimation and compensation [8], only a few studies have 
dealt with the fact that a single-size scatterer model may 
not properly represent backscattering from complex struc-
tures with different spatial scales. Some researchers have 
studied the effects of scatterer size variations when ob-
taining ESD estimates using Bernoulli (i.e., a population 
consisting of scatterers of two different sizes) [9], [10] and 
Gaussian [11], [12] size distributions.

For Bernoulli size distributions, Roberjot et al. [9] stud-
ied the case in which the concentration of small scatterers 
was significantly higher than that of the large scatter-
ers. The investigators used a solid sphere scattering model 
[13] to obtain estimates of scatterer size from a physical 
phantom containing glass beads. The size of the smallest 
and largest beads were around 4 μm and between 75 and 
90 μm, respectively. Roberjot et al. obtained experimental 
ESD estimates of 96, 28, and 8  μm when using analy-
sis frequencies between 2 and 8, 8 and 30, and 34 and 
60 MHz, respectively. The authors concluded that differ-
ent frequency ranges were more sensitive to different spa-
tial scales, and that in particular higher frequencies were 
more sensitive to smaller scatterers. Mamou et al. [10] 
studied the effects of varying the acoustic concentration of 
the individual sub-populations using a fluid sphere scat-
tering model. They concluded that to resolve the smaller 
scatterers, either the number density or acoustic imped-
ance mismatch of the smaller scatterers must be greater 
than the corresponding values for the larger scatterers, a 
result that generalizes the findings in [9].

For Gaussian size distributions, Insana and Hall [11] 
studied the effects of the ratio of the standard deviation σ 
and mean μ values of the size distribution when obtaining 
QUS estimates using a solid sphere model for data genera-
tion and a rigid sphere model for ESD estimation. They 
observed that ESD estimates changed as a function of the 
ka range used for the estimation. Furthermore, they ob-
served that when ka ≈ 0.8 the ESD estimate corresponded 
to μ with a bias of less than 10% independently of the 
σ /μ ratio. Mamou et al. [12] briefly studied the effects of 
increasing the standard deviation of the size distribution 
on ESD estimates when using a spherical Gaussian scat-
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tering model for both data generation and ESD estima-
tion. Similar to the findings of Insana and Hall, Mamou et 
al. observed that ESD estimates increased with increasing 
standard deviation of the scatterer size.

Although all of these works reported effects of scatterer 
size distributions on ESD estimates, none of them have 
provided a clear description of the effects of continuous 
size distributions on ESD estimates using different fre-
quency scales. The work in [9] only considered one size 
distribution realization as a basis for all of the reported 
conclusions. The work in [10] only presented results with 
simple discrete size distributions. The works in [11], [12] 
used Gaussian size distributions, which complicates the 
ESD estimate analysis because all possible scatterer sizes 
were present in the imaging targets.

The goal of the present work is to determine if differ-
ent frequency ranges are indeed more sensitive to different 
spatial scales when using discrete spherical scatterers with 
continuous scatterer size distributions of finite support. 
To that effect, simulations were conducted by construct-
ing computer phantoms with fluid spheres. ESD estimates 
were obtained for different frequency ranges and their 
relationship with the underlying size distributions was 
analyzed. Experiments were also conducted using physi-
cal phantoms containing weak scatterers (i.e., Sephadex 
spheres) to further validate the findings obtained through 
simulations. In this study, a fluid sphere scattering model 
was used for consistency between simulation and experi-
mental results. Although the suitability of discrete versus 
continuous models to describe scattering by tissues is still 
a subject of debate, the results presented here should have 
direct applicability for both physical [14] and biological 
[15] phantom studies.

II. Methods

A. Backscattering by a Multiple-Sized Scatterer 
Population

The exact analytic solution to the scattering of a plane 
wave of wave number k by a fluid sphere of radius a, com-
pressibility κ, and density ρ embedded in a fluid medium 
has been previously reported in the literature [16]. Under 
weak scattering assumptions, the backscattering cross-
section (BCS) σ(k, a) in the far-field corresponding to this 
scattering problem can be written as [17]
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where γκ = (κ − κ0)/κ0 and γρ = (ρ − ρ0)/ρ are the 
fractional changes in κ and ρ, respectively, and j1(∙) is the 
first-order spherical Bessel function. For illustration, the 
BCS σ(k, a) corresponding to a sphere with a(γκ − γρ) = 
1 is shown in Fig. 1.

One can now consider the situation in which ultrasound 
is scattered by an ensemble of β scatterers per unit of vol-

ume distributed spatially at random in an otherwise homo-
geneous, fluid medium. Assuming no multiple scattering 
among the individual scatterers, and neglecting the effects 
of coherent scattering, the theoretical differential back-
scattering coefficient (BSC) η(k)th can be expressed as
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where p(a) is the sphere radius probability distribution 
function (PDF), i.e., the probability that the sphere ra-
dius takes the value a.

B. BSC Estimates From Pulse-Echo Data

To obtain BSC estimates, an acoustic aperture receives 
pulse-echo pressure waveforms sm(t) when located at posi-
tions y = ym. The BSC can be estimated from the back-
scattered data from a region of interest (ROI) gated axi-
ally between depths (F − Δz/2) and (F + Δz/2) using a 
rectangular window, where F is the transducer’s focal 
depth and Δz is the gate length. The normalized backscat-
tered power spectrum S k( ) is defined here as
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where |S0(k)|2 is a reference power spectrum obtained from 
a reflection off a planar surface of known pressure reflec-
tion coefficient γ, 〈|Sm(k)|2〉 is the average of the power 
spectra of several adjacent, gated scan lines sm(t), and 
F(k) is a function that compensates for attenuation effects 
[18]. The normalized spectrum S k( ) can be related to BSCs 
after properly compensating for the transducer diffraction 
pattern. Following the method in [19], the estimated BSCs 
η(k)est can be calculated as
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where A0 = πR2 and Gp = kR2/2F are the aperture area 
and pressure gain factor of the transducer of radius R, 
respectively, and Jm(∙) is the mth-order Bessel function.
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Fig. 1. Backscattering cross-section σ(k, a) corresponding to a sphere 
with a(γκ − γρ) = 1.



C. Effective Scatterer Diameter Estimation

Microstructural information about the illuminated re-
gion can be obtained from estimates of η(k). ESD esti-
mates were obtained by minimizing the function [17], [20]

	
ESD d

/
min

max

est

= 2 ( , )

( , ) = 10 ( )

2

10

argmin

log

( ) ,

(

a
k

k

X k a X k

X k a k

ò -

h ss( , ) ,k a )

	 (5)

where X  is the mean value of X(f) within the wave number 
analysis bandwidth k ∈ [kmin, kmax].

D. ESD Estimation Simulations

Two continuous scatterer size distributions were ana-
lyzed in this study. The first case corresponded to a uni-
form distribution, i.e.,
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The second case corresponded to an inverse cubic distri-
bution, i.e.,
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The rationale behind the inverse cubic distribution was 
that the number of spheres of radius a that could be fit 
into a fixed volume V decreases as 1/a3. Therefore, there 
are more likely to be a larger number of smaller scatterers 
contained in a particular volume than larger scatterers. It 
should be emphasized at this point that given the current 
lack of knowledge about actual scattering sites in tissues, 
it is not suggested here that these distributions are neces-
sarily representative of the ones found in biomedical QUS 
applications. However, it is expected that given the rather 
dissimilar emphasis the PDFs used in this study give to 
small scatterers [i.e., the ones with lower associated σ(k, a) 
amplitudes] the results presented here will provide insights 
into the effect of general continuous scatterer size distribu-
tions. For all simulations, the individual scatterers were 
modeled as weakly scattering fluid spheres with (γκ − γρ) 
= 0.1. Four different ranges of scatterer diameters were 
used in the simulations: 25 to 100 μm, 25 to 50 μm, 50 
to 100 μm, and 50 to 75 μm. The effects of scatterer size 
distributions were studied by conducting simulations us-
ing two methods:

1) Method 1: In the first method, (2) was used to calcu-
late η(k)th for several frequencies between 0 and 60 MHz 
using p(a) as given by either (6) or (7). The evaluation of 
(2) was performed using numerical quadrature integration. 
Afterwards, ESD estimates were obtained using (5) with 

η(k)est = η(k)th. ESD estimates at different frequencies f0 
were obtained by analyzing the synthetic BSCs between 
fmin = 0.5f0 and fmax = 1.5f0, i.e., assuming an imaging 
system with 100% useable fractional bandwidth.

2) Method 2: The second method for evaluating the ef-
fects of size distributions consisted of simulating RF data 
and using (4) to calculate η(k)est for several ROIs of axial 
and lateral sizes of 16 λ (with λ calculated using the trans-
ducer center frequency) and 4 lateral beamwidths, respec-
tively. The mean and standard deviation of the estimated 
ESD values obtained with simulated f /4 transducers of 
center frequencies equal to 3, 6, 12, 24, and 36 MHz and 
100% −6-dB fractional bandwidth (which resulted in −6-
dB pulse lengths of approximately λ/2) were calculated. 
Special care was taken to ensure the scatterers did not 
overlap when generating the computer phantoms used for 
the RF data simulations. The number of scatterers per 
resolution cell was set to 80 considering the 3-MHz simu-
lated transducer, and the same phantoms were imaged 
using all five simulated transducers to isolate the effects of 
different imaging frequency ranges. The scatterer concen-
tration was set to a moderate value at the low-frequency 
end to avoid issues associated with large scatterer vol-
ume fractions [21]. It should be noted, however, that at 
the highest center frequency considered in the simulations 
there were only approximately 6 scatterers per ROI (i.e., 
32 × 4 = 128 resolution cells per ROI with 80/123 scatter-
ers per resolution cell at 36 MHz), and therefore coherent 
scattering effects may be observed for increasing analysis 
frequencies.

For both methods, the minimization of the expression 
in (5) was conducted by performing an extensive search 
considering ESDs in the range between 1 and 180 μm.

E. ESD Estimation Experiments

Experimental results were obtained by constructing 250 
bloom-strength, Type-B gelatin (Rousselot Inc., Dubuque, 
IA) phantoms. The background gelatin mixture consisted 
of 12% w/w gelatin powder, 87% de-ionized water, and 1% 
Germall Plus. The density and speed of sound of the gela-
tin mixture were measured to be 1.02 g/mL and 1.54 mm/
μs, respectively. Scattering was produced using Sephadex 
spheres (Sephadex G-25 Fine, GE Healthcare, Chalfont 
St. Giles, UK) at a concentration of 2 g of dry spheres per 
400 mL of gelatin mixture. The Sephadex spheres were 
soaked in distilled water for 24 h before making the phan-
tom, as recommended in [11]. The mass density of Sep-
hadex was measured to be 1.3 g/mL. In this work, it was 
assumed that no sound speed contrast existed between the 
Sephadex spheres and the gelatin background. The manu-
facturer reported a wet particle diameter ranging between 
35 and 140  μm. Two phantoms were constructed. The 
first phantom contained spheres spanning the whole range 
provided by the manufacturer. The second phantom was 
constructed using Sephadex spheres sieved before wetting 
to have a diameter larger than 53 μm. For both phan-

746 IEEE Transactions on Ultrasonics, Ferroelectrics, and Frequency Control, vol. 58, no. 4, April 2011



toms, a portion of the gelatin plus Sephadex mixture was 
preserved, sliced, and imaged using an optical microscope 
for sphere size determination. The scatterer size PDF esti-
mates for both phantoms are given in Fig. 2.

Four different transducers with nominal center fre-
quencies of 5, 7.5, 10, and 13 MHz were used to scan the 
phantom. The properties of the transducers used for the 
experiments are given in Table I. A total of 441 scan lines 
were obtained by translating a transducer over an area of 
4 cm2. Spectra from segments of length Δz = 15λ centered 
around the transducer focus, with λ calculated using the 
nominal transducer center frequency, were obtained for all 

441 scan lines. All 441 estimated spectra were combined to 
obtain an average BSC curve for each transducer. Attenu-
ation compensation was performed using [18, Eq. (16)] 
with the attenuation coefficients of each phantom estimat-
ed using through-transmission measurements with an f/4, 
7.5-MHz transducer and fitted to a cubic polynomial. The 
estimated ESD was obtained using (5) and performing an 
extensive search considering ESDs in the range between 1 
and 240 μm.

III. Results

A. Simulation Results

The simulation results are presented in Figs. 3 and 4 
for the uniform and inverse cubic size distributions, re-
spectively. In both figures, the top row presents the BSCs 
corresponding to the scatterer populations (normalized to 
a maximum value of 1 for the presented frequency range) 
as predicted by (2), and the bottom row presents the ESD 
estimates using method 1 (solid line) and method 2 (star 
marks with error bars). For all simulations, there is an 
agreement between the ESD estimates predicted by the 
two simulation methods. Therefore, any potential coher-
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Fig. 2. Scatterer size PDF p(a) corresponding to the first (left) and sec-
ond (right) phantoms used for the experimental BSC measurements.

TABLE I. Properties of the Transducers Used for the Experimental BSC Measurements. 

Nominal center 
frequency 
(MHz)

Analysis  
bandwidth 

(MHz) f/# Diameter

5 2.4 to 7.0 3 0.75 in (19.05 mm)
7.5 3.5 to 11.0 4 0.75 in (19.05 mm)
10 5.2 to 16.1 4 0.5 in (12.7 mm)
13 7.5 to 19.2 3 0.5 in (12.7 mm)

Fig. 3. Simulation results using a uniform scatterer size distribution. Top row: normalized BSCs as predicted by (2). Bottom row: ESD estimates 
obtained using methods 1 (solid line) and 2 (star marks with error bars).



ent effects in the estimated BSCs when using simulation 
method 2 did not influence the estimated ESDs when us-
ing the estimation method outlined in Section II-C. It 
can be observed that both simulation methods predict a 
decrease in the value of the ESD estimates for increasing 
center frequency of the analysis range. Consistent with 
observations reported in the literature, the variance of the 
ESD estimates obtained using simulation method 2 in-
creased with decreasing analysis frequencies as the domi-
nant ka values were reduced below 1 [11], [22].

B. Experimental Results

The experimental results are presented in Fig. 5. In the 
first column of Fig. 5, the normalized experimental BSC 
obtained using the 5-MHz (solid line), 7.5-MHz (dash-dot-
ted line), 10-MHz (dashed line), and 13-MHz (dotted line) 
transducers, together with the theoretical BSC (thick dot-
ted line) predicted using (2) are presented. The theoretical 
BSC curves were obtained using (2) together with (1) and 
the PDFs reported in Fig. 2.

The agreement between the theoretical ηth(k) and ex-
perimental ηest(k) BSC curves was quantified by calcu-
lating the mean and standard deviation of the log-error 
10 log10 (ηest(k)/ηth(k)). The log-error mean and standard 
deviation values were 0.96 dB and 0.37 dB for phantom 
1 and −0.43 dB and 0.5 dB for phantom 2, respectively. 
Therefore, both the magnitude and frequency dependence 
of the experimental and theoretical BSC curves corre-
sponding to both phantoms were in very good agreement. 
It should be remarked that ESD estimates depend only 
on the frequency dependence of estimated BSCs. It can 
be observed that for phantom 2 (i.e., the phantom with 
the narrower size distribution) the BSC minimum around 
11 MHz is more pronounced than for phantom 1.

The ESD estimates obtained with the 5-MHz (star), 
7.5-MHz (pentagon), 10-MHz (square), and 13-MHz (dia-
mond) transducers, together with the theoretical curve 
(dashed line) predicted using method 1 from Section II-
D, are presented in the second column of Fig. 5. When 
reporting the experimental ESD estimates, the center fre-
quency was taken to be equal to the mean frequency of 
the analysis bandwidths reported in Table I. As expected 
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Fig. 4. Simulation results using an inverse cubic scatterer size distribution. Top row: normalized BSCs as predicted by (2). Bottom row: ESD esti-
mates obtained using methods 1 (solid line) and 2 (star marks with error bars).

Fig. 5. Experimental results corresponding to the Sephadex sphere 
phantoms. First column: experimental BSC curves obtained with the 5-,  
7.5-, 10-, and 13-MHz transducers. For comparison, the normalized BSCs 
predicted by theory are also presented. Second column: estimated ESDs 
obtained with the 5-, 7.5-, 10-, and 13-MHz transducers, together with 
the theoretical curves predicted using method 1 from Section II-D.



from the agreement between theoretical and experimental 
BSC curves, the experimental and theoretical ESD esti-
mates were in very good agreement. The experimental and 
expected ESD estimates at the analysis center frequencies 
of all transducers are reported in Table II.

IV. Discussion

Several important observations can be drawn from the 
results presented in the previous section. First, the results 
of Section III-A indicated that for low enough analysis 
frequencies, the ESD estimates were highly biased by the 
maximum size of the largest scatterers present. For low 
analysis frequencies and weakly scattering spherical in-
clusions, the estimated ESD should converge to (see Ap-
pendix)
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For the particular cases of uniform and inverse cubic scat-
terer size distributions, the low-frequency ESD estimates 
will be given by
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For the rest of this work, the term “low frequencies” will 
be reserved to the frequencies that satisfy kD̂ ./2 1  The 
expected ESDs at low  frequencies corresponding to the 
populations used in Section III-A are given in Table III.

The simulation results at low frequencies had excellent 
agreement with the values predicted by (8), as reported 
in Table III. The bias toward larger scatterers has been 
reported previously in the literature [11], and was cited by 
Mamou et al. [10] as the reason why the smaller scatter-
ers in a Bernoulli distribution could only be detected us-
ing QUS if their acoustic concentration was large enough 
compared with that of the larger scatterers. It should be 
noted here that this effect prevailed even for the inverse 
cubic distribution, which largely emphasized the acoustic 
concentration of small scatterers.

The expression in (8) was derived by keeping the first 
two terms of the Taylor series expansion in (15). A dif-
ferent expression was derived in [11] by only keeping the 
first term in the Taylor expansion in (15), i.e., σ(k, a) ≈ 
k4a6. Under this assumption, the ESD limit at low ka was 
proposed to be equal to [11]
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For the cases of uniform and inverse cubic size distribu-
tions, (11) reduces to
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However, this approach is not expected to properly pre-
dict ESD estimates at low ka because if one only considers 
the k4 frequency dependence, then σ(k, a) would be the 
same for all a up to a scaling factor and therefore (5) 
would not converge. As an example, when using amin = 
12.5 μm and amax = 50 μm the expressions in (12) and 
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TABLE II. ESD Estimates (in Micrometers) Obtained From the Sephadex Sphere Phantoms. 

Center  
frequency* 
(MHz)

Phantom 1 Phantom 2

Experiment Expected Experiment Expected

5 (4.7) 99 98.5 98.5 102.5
7.5 (7.25) 82.5 86.0 87.0 91.0
10 (10.7) 59.0 61.0 58.5 61.0
13 (13.35) 47.5 48.5 45.5 47.5

*In the first column, the nominal and analysis band center frequencies are reported outside and inside 
parentheses, respectively.

TABLE III. Expected ESD Estimates in Micrometers at Low Frequencies. 

Diameter 
range (μm)

Uniform Inverse cubic

Eq. (9) Simulation Eq. (10) Simulation

25 to 100 88.2 88.0 81.8 81.5
25 to 50 44.2 44.0 41.8 42.0
50 to 100 88.5 88.5 83.7 83.5
50 to 75 67.3 67.5 65.3 65.5



(13) predict D  = 81.1 μm and D  = 56.7 μm for the uni-
form and inverse cubic distributions, respectively. In this 
case, the underestimation of the expected ESD for low ka 
values when using (11) was moderate for the uniform dis-
tribution but significant when using an inverse cubic dis-
tribution.

Second, for high frequency values, the ESD estimates 
decayed monotonically. For further clarification of the 
behavior of the estimated ESD values as a function of 
frequency, the ESD curves corresponding to the four 
populations studied in Section III-A are presented to-
gether in Fig. 6 for both scatterer size distributions. It 
can be observed that all curves closely approached a 
common asymptotic behavior for high enough frequency 
values. It is hypothesized here that the asymptotic be-
havior was caused by the estimator locking onto the 
first lobe of σ(k, a), i.e., the region around the first max-
imum of σ(k, a) at ka ≈ 1.37 as shown in Fig. 1. This 
situation arises from the inability of the single-size 
σ(k, a) to reproduce the expected BSC generated by 
populations of scatterers of different sizes for high 
enough frequencies, as observed by comparing the BSC 
curves in Figs. 3 and 4 with σ(k, a) in Fig. 1. Insana and 
Hall [11] also observed and discussed this estimation 
ambiguity when using oscillatory scattering models in 
the context of ESD estimation with noisy data. Insana 
and Hall argued in [11] that the flat frequency response 
of σ(k, a) around its first lobe minimized the variance of 
log (η(k)est/σ(k, a)). For the rest of this work, the term 
“high frequencies” will be reserved to the frequencies 
that satisfy kD̂/2 > 1.37.

Given that the first lobe is approximately centered 
around ka = 1.37, the diameter DAS that corresponds to 
locking onto the first lobe of σ(k, a) as a function of the 
center frequency f of the analysis range is given by
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where c0 is the speed of sound in the background (con-
sidered here to be 1.5 mm/μs), DAS is given in microm-
eters, and f is given in megahertz. The asymptotic curve 
corresponding to (14) is also plotted in Fig. 6. It can be 
observed that for both distributions, the asymptotic curve 

agrees very well with the ESD estimates for sufficiently 
high analysis frequencies.

It should be stressed the expression in (14) is only 
an approximation of the actual frequency dependence of 
the ESD estimates. To compare (14) with the simulation 
results, ESD curves obtained with method 1 from Sec-
tion II-D were fitted to 1/f in the range between 24 and 
54 MHz. The proportionality constants obtained from a 
least mean square fit for all cases reported in Section III-
A are shown in Table IV. The obtained proportionality 
constants are all within 10% of the value of 654 estimated 
from the location of the first peak of the scattering model 
function in (1). Deviations from the expression in (14) are 
expected because the actual size distribution has an effect 
on the shape of the BSC curves, as can be assessed from 
Figs. 3 and 4. Although the actual scatterer size distribu-
tion will have some effect on the ESD estimates obtained 
when using (5), the results presented in this work suggest 
such dependence will be very weak and (14) can be used 
as a good approximation to describe the behavior of ESD 
estimates for high enough frequencies.

Given that the asymptotic behavior of ESD curves is 
almost independent of the actual scatterer size distribu-
tion, these results suggest that ESD estimates may fail 
to represent actual microstructural properties of the ana-
lyzed ROIs if scattering is described using a single scat-
terer model. In particular, Fig. 6 showed that at 36 MHz, 
the estimated ESDs were around 20  μm for all of the 
analyzed distributions even though the smallest scatterers 
for two of the four analyzed populations were 50 μm in 
diameter. Further, for all simulations the standard devia-
tions of the ESD estimates using method 2 were less than 
4% of the corresponding mean ESD values at 12 MHz and 
above, which could erroneously be interpreted as a sign of 
robust estimations.

Third, the results presented in Section II-B suggest 
that the trends observed in simulations may also be ob-
served in experiments. In particular, two key results have 
been experimentally validated. First, the experimental 
ESD versus analysis frequency curves in the first col-
umn of Fig. 5 exhibited the same inverse frequency de-
pendence observed in simulations. Further, the curves 
became almost equivalent to each other for sufficiently 
high analysis frequencies. Second, and perhaps more im-
portantly, the ESD estimates obtained from phantom 2 
using the 10- and 13-MHz transducers were outside the 
range of scatterer sizes actually present in the phantom 
and reported in Fig. 2.
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Fig. 6. ESD estimates when using uniform (left) and inverse cubic (right) 
size distributions.

TABLE IV. Proportionality Constant of the Asymptotic 1/f 
ESD Behavior at High Frequencies. 

Diameter 
range (μm)

Uniform 
Eq. (9)

Inverse cubic 
Eq. (10)

25 to 100 625 611
25 to 50 610 597
50 to 100 625 631
50 to 75 641 644



The results presented in this study complement ear-
lier works available in the literature. It is worth noting 
that it is not suggested here that QUS imaging will not 
be capable of providing meaningful ESD estimates at 
high frequencies for any scatterer size distribution. Cer-
tainly, previous studies have shown that different spatial 
scales can be resolved when imaging targets with sim-
ple discrete bimodal scatterer size distributions (i.e., a 
Bernoulli distribution) [9]. Similarly, for particular cases 
of continuous size distributions it should be possible to 
properly estimate microstructural properties. However, it 
has already been reported that even for simple discrete 
bimodal distributions proper determination of micro-
structure is not guaranteed for all combinations of scat-
terer sizes and acoustic concentrations [10]. The results 
presented here are the continuous unimodal distribution 
counterpart, and suggest that different frequency ranges 
will not necessarily be sensitive to different spatial scales 
because of the potential inability of scattering models to 
properly predict the more complicated estimated BSCs 
at high frequencies.

Further, it is not suggested here either that ESD esti-
mates are not meaningful representations of microstruc-
tural properties. In fact, the results of this study may 
provide new insights into how to properly interpret ESD 
estimates. Until now, a recurrent problem of QUS imag-
ing has been the inability to determine the validity of 
the obtained estimates given that estimators such as the 
one in (5) will always provide a valid numerical solution. 
The presented results suggest that analyzing the behav-
ior of the ESD versus frequency curves may provide a 
way to analyze QUS estimates. Although high-frequency 
estimates may not be related to actual microstructural 
properties, comparison with asymptotic ESD curves such 
as the one presented in Fig. 6 can be used to determine 
if the obtained QUS estimates are indeed correlated with 
tissue microstructure. The results presented here suggest 
that even if QUS estimators are not sensitive to small 
spatial scales, the ESD estimates at low enough frequen-
cies will be highly correlated with the largest scatterer size 
present in the interrogated ROIs, which is a meaningful 
microstructural descriptor.

Finally, it should be acknowledged that it would be 
preferable if QUS estimators were sensitive enough to pro-
vide more information about a general continuous uni-
modal scatterer size distribution. It is clear from the ex-
perimental BSC curves presented in Fig. 5 that the ESD 
estimator in (5) could not effectively exploit the noticeable 
shape difference between the BSCs corresponding to the 
experimental phantoms. Therefore, the results presented 
here are likely to be dependent also on the optimization 
problem used for ESD estimation. The goal of more robust 
ESD estimation may require more elaborate scattering 
models that include information about typical scatterer 
size distributions in tissues, as suggested by Insana and 
Hall [11]. For example, Mamou et al. in [12] demonstrated 
the use of an exponential form factor to estimate the mean 
μ and standard deviation σ sizes of populations of spheri-

cal Gaussian scatterers with Gaussian size distributions 
[23]. In particular, in simulations using μ = 32 μm and σ 
= 8 μm, the two-parameter model allowed estimation of μ 
with near-zero bias, whereas the use of the simple Gauss-
ian scattering model resulted in ESD estimates around 
37 μm. However, in practice, the highly complex relation-
ship between BSCs and scatterer size distributions may 
cause the inverse problem to become intractable or ill-
conditioned.

V. Conclusions

The results presented in this work highlight some of 
the effects of continuous scatterer size distributions when 
obtaining ESD estimates. In general, ESD estimates were 
found to change as a function of the frequency range used 
for the size estimation. It was observed that for low fre-
quencies, the ESD estimates were highly uniform and bi-
ased toward the maximum scatterer size, whereas for high 
frequencies, the ESD estimates reached asymptotic values 
almost independent of the actual scatterer size distribu-
tion. Therefore, these results challenge the hypothesis that 
different frequency ranges are more sensitive to different 
spatial scales when using a single-size scattering model. 
Although the results presented here are not necessarily 
universal and most likely will be affected by the actual size 
distribution, frequency-dependent BCS of the individual 
scatterers, and the actual algorithm used for ESD esti-
mation, this work suggests that caution must be exerted 
when analyzing and interpreting ESD estimates over dif-
ferent frequency ranges.

Appendix

Low-frequency ESD estimates from a population of 
scatterers to obtain asymptotic ESD estimates in the low 
ka limit, an expansion of η(k, a) as ka → 0 must be per-
formed. For low ka values, and using the Taylor expansion 
of j1(x) [24], the dependence of σ(k, a) in (1) on k and a 
can be expressed as
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For low ka values, only the term m = 1 in (15) needs to 
be considered. Using the fact that (1 + x)n → (1 + nx) 
for x ≪ 1, the single scatterer BCS in (15) can be ap-
proximated as
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Therefore, the backscattering coefficient η(k) can be writ-
ten as
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The use of the expressions in (16) and (17) together 
with the estimator in (5) results in the expression given 
by (8).
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