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Abstract—By analyzing backscattered echo signal power 
spectra and thereby obtaining backscatter coefficient vs. fre-
quency data, the size of subresolution scatterers contributing 
to echo signals can be estimated. Here we investigate trade-offs 
in data acquisition and processing parameters for reference 
phantom-based backscatter and scatterer size estimations. RF 
echo data from a tissue-mimicking test phantom were acquired 
using a clinical scanner equipped with linear array transduc-
ers. One array has a nominal frequency bandwidth of 5 to 
13 MHz and the other 4 to 9 MHz. Comparison of spectral 
estimation methods showed that the Welch method provided 
spectra yielding more accurate and precise backscatter coef-
ficient and scatterer size estimations than spectra computed 
by applying rectangular, Hanning, or Hamming windows and 
much reduced computational load than if using the multitaper 
method. For small echo signal data block sizes, moderate im-
provements in scatterer size estimations were obtained using 
a multitaper method, but this significantly increases the com-
putational burden.

It is critical to average power spectra from lateral A-lines 
for the improvement of scatterer size estimation. Averaging 
approximately 10 independent A-lines laterally with an axial 
window length 10 times the center frequency wavelength opti-
mized trade-offs between spatial resolution and the variance of 
scatterer size estimates. Applying the concept of a time-band-
width product, this suggests using analysis blocks that contain 
at least 30 independent samples of the echo signal.

The estimation accuracy and precision depend on the ka 
range where k is the wave number and a is the effective scatter-
er size. This introduces a region-of-interest depth dependency 
to the accuracy and precision because of preferential attenua-
tion of higher frequency sound waves in tissuelike media. With 
the 5 to 13 MHz, transducer ka ranged from 0.5 to 1.6 for scat-
terers in the test phantom, which is a favorable range, and the 
accuracy and precision of scatterer size estimations were both 
within ~5% using optimal analysis block dimensions. When 
the 4- to 9-MHz transducer was used, the ka value ranged 
from 0.3 to 0.8 to 1.1 for the experimental conditions, and the 
accuracy and precision were found to be ~10% and 10% to 
25%, respectively. Although the experiments were done with 2 
specific models of transducers on the test phantom, the results 
can be generalized to similar clinical arrays available from a 
variety of manufacturers and/or for different size of scatterers 
with similar ka range.

I. Introduction

Ultrasound is a widely used, nonionizing, and cost-
effective diagnostic imaging modality. Images are 

created using broadband pulses centered at a chosen fre-
quency. The envelope of the echo signals is derived from 
radio frequency (RF) echo data, and this information is 
converted to an amplitude-modulated gray-scale B-mode 
image. The frequency content of backscattered ultrasonic 
data, which may be derived from the RF echo signals, is 
not generally used, even though it contains useful clini-
cal information as reported by researchers for 30 years 
[1]–[6]. For example, the size of subresolution scatterers 
can be derived through careful analysis of the backscatter 
coefficient vs. frequency, and the “acoustic concentration” 
(defined as the product of the scatterer number density 
times the relative impedance difference between the scat-
terers and surrounding tissues) can be estimated from the 
backscatter amplitude and derived scatterer size informa-
tion [7]–[12].

In this paper, we consider the problem of construct-
ing parametric images of scatterer sizes [12] by analyzing 
the Fourier spectra of windowed RF echo data. Here the 
incoherent scattering component is considered the signal, 
and the echo signal power spectrum is fit to a theoretical 
model to calculate an effective scatterer size. To gain bet-
ter spatial resolution, short duration analysis windows are 
needed, but they increase the importance of edge effects 
[13] and often yield noisy power spectra estimates. Speckle 
due to random locations of scatterers and electronic noise 
also are sources of fluctuations in ultrasound backscatter 
measurements. Large axial window lengths and averaging 
over independent beam lines are often used to reduce such 
effects and, therefore, improve the accuracy and precision 
of backscatter estimates. Lizzi et al. [1] suggested averag-
ing 5 to 10 A-lines, while Madsen et al. [5] recommended 
25, and Topp et  al. [14] found 20 were sufficient. Most 
approaches apply long-duration analysis windows, 6 μs or 
greater, but this compromises axial resolution.

For short-duration axial windows, an iterative technique 
for broadband backscatter measurements is described by 
Madsen [15]. Chen et al. [16] reported that backscattered 
power spectra do not agree with expected model results 
if a 2-μs window (2.5 wavelengths at a 2.5-MHz center 
frequency) is used. However, when the window size was 
increased to 5 μs, the measured results agreed with those 
from the model, and larger windows made the fit even 
better [16]. A Hamming window gave better accuracy at 
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regions close to the frequency limits of the available pow-
er spectrum than a rectangular window. Wear [17] also 
showed larger (Hamming) window lengths yielded more 
precise spectral parameter estimates. Bigelow and O’Brien 
[18] demonstrated that, despite its high side lobes, the 
rectangular window gave slightly better scatterer size es-
timates than a Hanning window, especially for a strongly 
focused source. Topp et al. [14] found experimentally that 
a 10-wavelength window (Hanning) gave window-length 
independent backscatter spectral slopes (therefore, rea-
sonable accuracy) for different single element transducers 
operated at 3.5, 7.5, and 10 MHz. Huisman and Thijs-
sen [19] reported that data over larger lateral widths and 
greater axial lengths gave better accuracy and precision. 
Oelze and O’Brien [20] considered lateral resolution and 
axial window length at the same time and found the op-
timal choices for their scatterer size estimation method 
is 4 to 5 beam widths and 15 to 20 pulse lengths using a 
Hanning window.

For the sake of improving the resolution while account-
ing for window edge effects, a gate-edge correction factor 
was introduced by Oelze and O’Brien [21]. By applying 
this correction, accuracy to within 5% of actual values 
may be achieved at window lengths that are less than 5 
pulse lengths. However, the correction factor can be found 
only if the excitation pulse, frequency-dependent attenu-
ation, and backscatter are known or properly approxi-
mated. Also, their derivation is based on a single element 
transducer and would be difficult to transfer to a clinical 
array, where dynamic aperture control, dynamic focusing, 
and apodization are applied.

Gerig et al. [12] derived expressions for the variance of 
reference-phantom-based scatterer size estimates [4]. These 
yield results that are in reasonable agreement with simu-
lated and physical phantom data. Smaller variances occur 
at larger window lengths, use of a greater number of inde-
pendent sample (and reference) waveforms in computing 
the echo signal power spectra, and a wider bandwidth.

The purpose of the work described in this paper is to 
study window parameters and combinations of indepen-
dent A-lines needed to gain both acceptable accuracy and 
precision of scatterer size estimates with a clinical scanner 
and a reference-phantom analysis scheme. Results will be 
compared for different types of gating windows, window 
lengths, and different power spectra estimation methods. 
In addition, the possibility of a depth dependence on 
scatterer size estimations, not reported in previous stud-
ies [12], [22], [23], is also considered. This work will dis-
cuss the frequency range changes (hence, size estimation 
changes) over depth.

II. Methods

A. Backscatter and Scatterer Size Estimates

Scatterer size estimates are performed using a reference 
phantom method [4], whereby echo signals from a sample 

and from a reference phantom are acquired using the same 
transducer and machine settings. Yao et al. [4], [24] have 
shown that this approach accounts for system-dependent 
factors in backscatter and attenuation coefficient estima-
tions. Using the reference phantom method, the backscat-
ter coefficient of a sample, σs(ω), is given by [25]
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where S stands for the echo signal power spectrum, σ is 
the backscatter coefficient, z is the depth, α is the attenu-
ation coefficient, and ω = 2πf is the angular frequency. 
The subscripts s and r refer to the sample and reference, 
respectively, and the speed of sound is assumed to be the 
same for the sample and the reference. Using a Gaussian 
spatial autocorrelation function (SAF) for the theoretical 
backscatter model, the effective scatterer size is given as 
[12], [26]
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where y(ω) = 10 ln(σs(ω)/ω4), d 1
2 312 2= ( ) /p  ≈ 3.11, 

and c is the speed of sound.
The variance of the backscatter coefficient and scat-

terer size estimate is given by [12]
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where Ns and Nr represent the number of independent 
sample and reference waveforms used to calculate the 
spectral averages, respectively, and the summation is lim-
ited to frequencies for which the associated backscatter 
estimates are uncorrelated. The interval between uncor-
related estimates is a function of the data window type 
and is inversely proportional to the window length. Theo-
retically, the frequency resolution using different gating 
window sizes can be approximated according to Lizzi et al. 
[27] as

	 Df
L

=
1
e

,	 (5)

where Δf is expressed in megahertz, ε  =  1 and 2 
(MHz−1 · mm−1) for the Hamming and rectangular win-
dows, respectively, and L is the window length in units of 
millimeters. It can also be determined experimentally by 
estimating the correlation of backscatter estimates. Rear-
ranging (4), the fractional standard deviation of the size 
estimates is
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where â is in units of millimeters.

B. Acquisition of Data from Phantoms

The large, homogeneous part of a previously described 
“effective frequency phantom” [28] was scanned using a 
Siemens SONOLINE Antares scanner (Issaquah, WA) 
equipped with a 9.5-MHz VFX13–5 linear array operated 
at 10 MHz (screen setting), or a 6-MHz VFX9–4 linear 
array transducer driven at 6.15 MHz (screen setting). In-
spection of spectral data showed that these frequency set-
tings yield the broadest useable bandwidth (−15 dB) RF 
signals for the 2 probes. The VFX13–5 transducer covers 
a region of interest (ROI) to a depth of 5 cm, while the 
VFX9–4 can cover up to a 9-cm depth. Although our ex-
periments were done with these 2 specific models of trans-
ducers, the results can be generalized to similar clinical 
arrays available from a variety of manufacturers.

Echo signals from 21 independent (uncorrelated) planes 
were acquired by translating the transducer in the eleva-
tional direction by a distance (~5 mm) greater than the 
elevational aperture and acquiring radiofrequency echo 
signals. These were used as “sample” data, and signals 
from another 20 independent planes were used as “ref-
erence” data. Each plane acquired using the VFX13–5 
transducer consisted of signals along 312 acoustic scan 
lines, separated by 0.120 mm. The transmit focus was at 
2  cm, the transmit F-number was 1.33, and the receiv-
ing F-number was maintained at 0.5 until the aperture 
limit was reached. Each plane acquired using the VFX9–4 
transducer consisted of echo signals for 236 acoustic scan 
lines separated by 0.158  mm. The transmit focus was 
7 cm, the transmit F-number was 2, and the receiving F-
number was 0.5 to the maximum depth possible.

The speed of sound in the homogeneous medium of 
the tissue-mimicking phantom is 1540 m/s, the density 
is 1.04  g/cm3, and the attenuation is 0.5  dB/cm/MHz, 
with a linear frequency dependence around 5  MHz, as 
designed [28]. Glass-bead scatterers are placed spatially 
at random in the background medium. The concentration 
is 1.36 mg/cm3, or ~9190  scatterers/cm3. The speed of 
sound and density of the beads are 5572 m/s and 2.54 g/
cm3; and the Poisson’s ratio is 0.21. The bead diameter 
distribution measured by Wilson et al. [28] fits a normal 
distribution where the mean is 48.1 μm and the standard 
deviation is 6.8 μm. The Gaussian model scatterer size 
estimated in this paper is an “effective” size and is not 
the physical scatterer size of the glass beads. A Gaussian 
SAF model is a good model describing the backscatter 
coefficient vs. frequency shape of the glass beads (with a 

conversion factor) and is often applied for soft tissue. Over 
the frequency range of 0 to 15 MHz, the effective scatterer 
diameter is ~69 μm for ~48 μm physical diameter glass 
beads [29] based on Gaussian model backscatter vs. fre-
quency data for the frequency range tested.

Because the reference and sample phantoms were iden-
tical, there was no need for attenuation corrections be-
tween sample and reference.

Computer simulations were also done using the fre-
quency domain ultrasonic simulation model developed by 
Li and Zagzebski [30] and confirmed with the experimen-
tal results.

III. Results

A. Determining the Number of Independent A-Lines

For both transducers, the adjacent acoustic scan line 
signals are correlated. To determine the number of inde-
pendent A-lines in a ROI, the correlation coefficient was 
measured between neighboring A-lines using
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where xi and yi are RF echo signal values for A-lines x and 
y, respectively, at data value axial position i in the subre-
gion of the echo data, and x  and y  are the sample mean 
values within this subregion. The summation is over i. 
The correlation coefficient between RF data segments was 
calculated as follows. For each reference phantom image, 
we calculated the correlation coefficient between pairs of 
1-cm RF-echo signal segments centered at a 1, 2, and 
3-cm depth for VFX13–5 experiments, and at 3-, 5-, 7-, 
and 8.5-cm depths for VFX9–4 experiments on beam lines 
within 2 cm of the center of the image. Thus, correlation 
coefficients between segments from RF beam lines 1 and 
2, 2 and 3, and so on were averaged to get the covariance 
between adjacent beam lines. The correlation coefficients 
between segments 1 and 3, 2 and 4, and so on were aver-
aged to get the correlation between every other beam line. 
Beam-line separations were used to determine the lateral 
distance between these segments. The results were then 
averaged over all 20 reference-phantom images.

From the correlation coefficients between the A-lines, 
we can calculate the number of effective, independent A-
lines according to [31]
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where N is the total number of A-lines contained within 
an ROI, m is the A-line separation in units of the pitch of 
the A-line, and ρ is the correlation coefficient. Fig. 1(a) 
shows the number of effective, independent A-lines calcu-
lated for the VFX13–5 transducer at a center frequency 
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setting of 10 MHz and using a 2-cm transmit focus. Fig. 
1(b) is for the VFX9–4 at 6.15 MHz and a 7-cm trans-
mit focus. For both transducers, shallower depths yielded 
a higher number of independent A-lines than deeper re-
gions. Note these data depend on the actual A-line spac-
ing, where the values for our transducers are reported in 
the methods section.

B. Spectral Estimations

The first step in scatterer-size imaging is to obtain 
power spectra estimates for echo data from the sample 
and reference. The power spectral density (PSD) can be 
estimated by averaging several periodograms. A standard 
periodogram uses a rectangular window; it is called a 
modified periodogram when a window such as a Hann 
(also called Hanning) window is used to reduce the spec-
tral leakage. The periodogram power estimator is based 
on a single sample of a filtered version of the signal under 
study. However, the variance of power spectrum estima-
tion is large [32], so we applied alternative spectral estima-
tors and different averaging schemes.

In addition to Hanning and Hamming windows, we ap-
plied the Welch method, a refined periodogram technique 
wherein the estimated spectrum is an averaged periodo-
gram of overlapped, windowed signal sections. We com-
puted PSDs using different windows in various overlapping 
pieces of the signal from a 4-mm ROI [33]. We employed 
a 2-mm Welch subwindow with a 50% overlap (50% mini-
mizes the variation [32]). A Hamming window was applied 
to each of the Welch subwindows. A section size that is half 
of the original window, with 50% section overlap, reduces 
the variance of spectral estimates to less than half of the 
variance using a periodogram for the same window [32]. 
The reduced variance is a trade-off with reduced spectral 
resolution, so the section length cannot be too small. In ad-
dition, the more modern, modified periodogram “multita-
per” method [34] (estimate from a combination of multiple 
orthogonal windows) was also used in spectral estimates for 
comparison. The multitaper method reduces the variance 
of spectral estimates by using a small set of “tapers,” or 

orthogonal windows, devised to minimize spectral leakage 
due to the finite length of each data segment. We applied 
the Thompson algorithm [34], [35]. The algorithm combines 
a set of independent modified periodograms from each RF 
data segment. The periodograms are computed by multi-
plying the data set by a set of orthogonal tapers (windows 
in the frequency domain) specified from discrete prolate 
spheroidal sequences (known as Slepian sequences [34], [36]) 
of a time bandwidth product of 3 (5 orthogonal tapers for 
the analysis done here). The time-bandwidth product selec-
tion is task dependent, exhibiting a trade-off between the 
spectral resolution and variance of the spectral estimates, 
but values in the range of 2 to 4 are typical choices. In our 
work, data processing was done using Matlab (MathWorks, 
Inc., Natick, MA).

Echo signal power spectra estimated from different 
methods are illustrated in Figs. 2(a)–(e). The dashed 
curve (with the legend “1-segment”) is a typical result 
for a single 4-mm analysis window. Averaging, of course, 
reduces the spectral fluctuations that result from the ran-
dom scatterer locations. As we increase to 25 adjacent 
A-lines (equivalent to ~10 independent A-lines according 
to Fig. 1), then 25 A-lines over 20 independent planes, this 
yields a smoother spectrum. In the literature on ultrasonic 
backscatter and scatterer size measurements, Hann and 
Hamming windows are both frequently used by different 
authors. Compared with a Hann window, a Hamming win-
dow applies greater weight to the edge points. However, 
the spectral estimates are almost identical with the Hann 
and the Hamming windows, as we see from Figs. 2(a) and 
(b). If we average a significant number of spectra (e.g., 
20 planes each with 25 A-lines, therefore ~200 indepen-
dent A-lines), the periodogram results are essentially the 
same as the ones using the Welch method or the multita-
per method as shown in the figures. However, the Welch 
method significantly improves the quality of the power 
spectra when a much lower number of data segments is 
used to estimate the PSD. Our experimental results show 
that averaging 10 independent segments yields very good 
spectra using the Welch method with a relatively small, 
4-mm window.
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Fig. 1. Number of effective, independent A-lines calculated from echo data for (a) the VFX13–5 transducer using a center frequency setting of 
10 MHz and a 2-cm transmit focus and (b) the VFX9–4 transducer, using a center frequency setting of 6.15 MHz and a 7-cm transmit focus.



Compared with the Welch method, we found that when 
spectral estimates were averaged over more than 10 inde-
pendent A-lines, the performance improvement of scat-
terer size estimates using the multitaper method does not 
justify the increased computational load. Therefore, the 
Welch method is a natural choice for echo signal spec-
tral estimates from tissue. However, when a small lateral 
analysis region (few A-lines) is required, the multitaper 
method may be advantageous. This approach will be the 
subject of a future report.

C. Spectral Smoothing

According to (5), the frequency resolution using differ-
ent spectral estimation examined in this paper is about 
0.2 to 0.3 MHz. This corresponds to more than 5 points 
if a 1024-point FFT is used for the 40-MHz sampling fre-
quency of the Siemens Antares machine. We do a 5-point 
outlier-trimmed moving average to smooth the measured 
power spectra. However, these power spectra, which are 
estimated using the Welch method and are averaged over 
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Fig. 2. Power spectra estimates using (a) a Hanning window periodogram, (b) a Hamming window periodogram, (c) a rectangular window periodo-
gram, (d) the Welch method, and (e) the multitaper method.



10 independent A-lines, are already fairly smooth. We 
find that for scatterer size estimations, doing the spec-
tral smoothing only yields small differences in most of 
the cases (less than 1% differences when a spectrum is 
averaged over ~10 independent A-lines). We also tried to 
smooth the spectra using a large order polynomial fit, as 
suggested by Hall et  al. [37]. Again, the differences are 
negligible in most cases. Bigelow and O’Brien [38] pointed 
out that errors in size estimates may be caused by the 
gradual changes to the spectra resulting from the ran-
dom scatterer spacing, instead of fast fluctuations (if any). 
They found that trying to remove fast spectral fluctua-
tions using homomorphic deconvolution does not provide 
improvements of size estimates because the backscattered 
spectra usually are smooth already. So, further spectral 
smoothing other than a small kernel moving average or 
polynomial fits on the entire spectrum may not be neces-
sary. This is understandable because scatterer size estima-
tors automatically act as a low pass filter on the backscat-
ter coefficient vs. frequency curve.

D. Performance of Sample Backscatter Coefficient  
(BSC) Estimation

Averaging spectra over adjacent A-lines can significant-
ly reduce spectral fluctuations, but it reduces the lateral 
resolution of the scatterer size image. To quantify this 
fluctuation and relate to the backscatter measurement, we 
define a “BSC noise index per sample point”
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where ŝ s is the measured backscatter coefficient of the 
homogeneous sample, σs is the true backscatter of the 
sample (determined by the size of glass beads in the test 
phantom and the Gaussian SAF model in this paper), and 
nf is the number of frequency points in the bandwidth 
used to estimate the scatterer size. The estimated back-
scatter may be treated as the true backscatter contami-
nated with noise (or error). If there is no noise present, the 
T-value will be zero, indicating the backscatter estimation 
is perfect. Because the amplitude of the backscattered sig-
nal varies significantly with frequency, a ratio is used in-
stead of the absolute difference. One can expect that as 
the analysis block size (or corresponding time-bandwidth 
product) increases, averaging uncorrelated estimates tends 
to cancel out the noise; hence, the T value will decrease.

Here the BSC and size estimations are done over a block 
or ROI (i.e., a rectangular region that contains several A-
line segments of rf data). To study the block size (lateral 
and axial size) dependence of the BSC and scatterer size 
estimations, the data were analyzed as follows. The BSC 
and size estimations were generated for several depths us-
ing (1) for backscatter, then (2) above for scatterer sizes. 
The axial block sizes (therefore, axial resolution) were var-
ied from 3 to 21 wavelengths, where the wavelengths were 

calculated from the center frequency of the power spectra 
at each depth. To study the lateral size dependency, we 
did not actually average periodograms laterally. Instead, 
we averaged periodograms at the same line location from 
different uncorrelated image planes. Hence, each A-line for 
which spectral data are averaged is independent. We aver-
aged the data from 1 to 21 sample scan planes. Equiva-
lently, the maximum number of independent A-lines to be 
averaged is 21 for the sample. For the reference phantom, 
we used 20 scan planes, and the reference power spectrum 
at each A-line location is the average of not only the 20 
scan planes but also 19 adjacent A-lines (9 to the left and 
9 to the right of itself) in each plane. According to Fig. 1, 
19 adjacent A-lines for different transducer and different 
depths can provide 5 to 11 effective, independent A-lines. 
Therefore, each reference power spectrum is averaged over 
about 100 to 220 effective, independent A-lines. This num-
ber is much more than the 1 to 21 independent A-lines 
used in the sample. Therefore, the BSC variances mea-
sured from the sample are mainly from the variance of the 
sample data. The reference variance, in most cases, only 
contributes a few percent to the measured sample BSC 
variance. The T-values and the scatterer size estimates 
(see Section III-E) are mean values of results within the 
central 3 cm (laterally) for each depth. The standard de-
viations of the data are calculated over the same regions.

Fig. 3 shows the T-values obtained with data from the 
VFX13–5 transducer focused at 2 cm. Fig. 3(a) displays 
the T-value using the Welch method vs. the number (1–
21) of independent RF segments for averaging spectral 
values and for different RF segment sizes (3–21 center 
frequency wavelengths). The T-value has a slope that de-
creases when the number of independent RF signal seg-
ments used to compute the spectra increases, while it 
decreases more slowly as window length increases. The 
same trend was observed for the results from the VFX9–4 
data. Very similar T-value results were obtained at other 
depths (1 and 3 cm for the VFX13–5 data and 3, 5, 7, and 
8.5 cm for the VFX9–4 data), indicating that the depth 
dependence on the T-value is small. Fig. 3(b) displays 
the T-value using an 11-wavelength window-length vs. the 
number of independent RF segments from which spectra 
were averaged, while Fig. 3(c) displays the T-value using 
9 independent RF segments vs. window-length in units of 
center frequency wavelength. The Welch method BSC fits 
the true BSC curve the best, i.e., it consistently yields the 
lowest T-values. The reduction of the T-value using the 
Welch method indicates a better reference phantom based 
BSC measurement can be achieved using this method.

E. Scatterer-Size Estimation and Its Variance vs. Spatial 
Resolution

1) VFX13–5 Experiments: For the experiments done us-
ing the VFX13–5 transducer, the data were analyzed over 
the −15-dB (with respect to the maximum spectral value 
at each depth) frequency range and at 1-, 2-, and 3-cm 
depth. The ka value is about 0.5 to 1.6 for each depth. 
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This is ideal for scatterer size estimates [39]. The bias of 
the Gaussian SAF scatterer size estimates are within 2 to 
3% for almost every depth and every spectral estimation 
method when at least ~6 independent A-lines are aver-
aged and a window length of ~10 wavelengths or more is 
used.

Figs. 4(a) and (b) show the experimental results at 
2  cm (the transmit focal zone) using different spectral 
estimation methods for the scatterer size estimation er-
rors vs. (a) the number of independent A-lines to be aver-
aged when an 11-wavelength window is used and (b) the 
window length when 9 independent A-lines are averaged. 
Figs. 4(c) and (d) show the scatterer size estimation errors 
at different depths using the Welch method to compute 
the spectrum.

Fig. 5 shows the experimental results at 2  cm (the 
transmit focal zone) using different spectral estimation 
methods for the percentage standard deviation of the scat-
terer size estimates vs. (a) number of independent A-lines 
to be averaged when an 11-wavelength window is used and 
(b) window length when 9 independent A-lines are aver-
aged. Standard deviations are obtained by analyzing scat-
terer size estimates for 250 ROIs from the independent 
acquisition planes. The theoretical values are calculated 
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Fig. 3. Backscatter coefficient (BSC) noise index per sample points (T-value), obtained from experimental data derived as described in Section III-D 
using the Siemens VFX13–5 transducer: (a) displays the T-value using the Welch method vs. the number (1–21) of independent RF segments for 
averaging spectral values and for different RF segment sizes (3–21 center frequency wavelengths); (b) T-values using an 11-wavelength window length 
vs. the number of independent RF segments averaged; and (c) T-values using 9 independent RF segments averaged vs. window length in units of 
center frequency wavelength.

Fig. 4. Scatterer size estimation errors vs. (a) number of independent 
A-lines to be averaged when an 11-wavelength window is used and (b) 
window length when 9 independent A-lines are averaged. Results are 
presented for data acquired with the VFX13–5 transducer and using 
different spectral estimation methods. (c) Scatterer size estimation er-
rors at 1-, 2-, and 3-cm depth using the Welch method vs. the number 
of independent A-lines averaged when an 11-wavelength window is used 
and (d) size estimation errors at different depths vs. window length when 
9 independent A-lines are averaged.



according to (5) assuming a rectangular window and (6). 
They somewhat underestimate the true variance but are 
reasonably close. The main contributor to the discrepancy 
may be the approximation (spectra variances are approxi-
mately equal to power spectra square) used in the theory. 
Although the images were visually inspected, small local 
homogeneities of the phantom may also partially contrib-
ute to the variance. The standard deviations using Hann 
or Hamming window are larger than those obtained when 
using other methods. The variance reduces as the num-
ber of A-lines to be averaged increases and as the win-
dow length increases. However, the reduction in variance 
comes at a trade-off with spatial resolution.

Fig. 6 displays the depth dependence of the size estima-
tion variance using the Welch method. The dependence 
is very weak in this case. This is because the measured 
−15-dB bandwidth (~7.5 MHz)/ka range (~0.5 to ~1.6) is 
similar at different depths for the VFX13–5 results.

2) VFX9–4 Experiments: When estimating the scat-
terer size using (2), some size estimates might turn out to 
be imaginary if the data are noisy. Because of its higher 
frequency range, this is not a big concern for the VFX13–5 
experiments, but it turned out to be important for the 
lower frequency, VFX9–4 data from the test phantom. 
If the scatterer size is smaller or the frequency is lower 
(hence, the ka value is small), the frequency dependence 
of the measured form factor is flatter. This, along with the 
narrower frequency range available for curve fitting for 
the VFX9–4, means that noise can sometimes make the 
best fit form factor slope larger than 0, thus producing an 
imaginary scatterer size estimate.

Two methods may be used to solve this problem. One 
way is to discard any imaginary values. The mean and 
variance are calculated only based on the real values of 
size estimates. The other way is to assign any imaginary 
valued results to an arbitrary small scatterer size value, 
e.g., 5  μm. This is similar to the method used by In-
sana and Hall [7], where they restricted the scatterer size 
search to a predefined range. Fig. 7 displays parametric 
mesh surfaces at a 7-cm depth, showing the axial win-
dow length in units of wavelength, the lateral block size 
in units of number of independent A-lines, and the scat-
terer size estimates in units of microns. In Fig. 7(a) and 
(c), the imaginary scatterer size estimates are handled by 
discarding them, while in Fig. 7(b) and (d), imaginary 
scatterer size estimates are handled by assigning them to 
be 5 μm. Fig. 7(a) and (b) are results calculated using 
the Welch method, while Fig. 7(c) and (d) are calculated 
using a rectangular window. The results obtained by the 
Welch method give a smoother surface, indicating the size 
estimation does not change significantly as the processing 
parameters change.

The size estimation variances are larger when the 5-μm 
assignment of imaginary values is used than when the 
imaginary number results are discarded. Figs. 8 and 9 
illustrate typical results of the size estimation variances. 
Results using the multitaper method are also included. 
Fig. 8 shows the standard deviations of the scatterer size 
estimates vs. the number of independent A-lines aver-
aged, using (a) a 5-μm assignment of imaginary values 
and (b) a NaN assignment of imaginary values at 7-cm 
depth (the transmit focal distance) and an 11-wavelength 
window was applied for each window type. Fig. 9 shows 
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Fig. 5. (a) Percent standard deviation of scatterer size estimates vs. the 
number of independent A-lines averaged when an 11-wavelength window 
is used and (b) percent standard deviation vs. window length when 9 
independent A-lines are averaged. Results are for data acquired at 2-cm 
depth using the VFX13–5 transducer. The theoretical values are calcu-
lated according to (5) assuming a rectangular window and (6).

Fig. 6. (a) Percent standard deviation of scatterer size estimates vs. the 
number of independent A-lines averaged when an 11 wavelength window 
is used and (b) percent standard deviation of scatterer size estimates vs. 
window length when 9 independent A-lines are averaged. Results are for 
the VFX13–5 transducer and the Welch spectral estimation method. The 
theoretical values are calculated according to (5) assuming a rectangular 
window and (6).



the standard deviations vs. axial window length at a 7-cm 
depth using 9 independent A-lines in the average. Stan-
dard deviations are obtained by analyzing scatterer size 
estimates for 190 ROIs from the independent acquisition 
planes. Results using the multitaper method are also in-
cluded. For small echo signal data block sizes, moderate 
improvements in scatterer size estimations were obtained 
using a multitaper method, but this significantly increases 
the computational burden.

Fig. 10 displays the size estimation errors for deep (7-
cm) objects and shallow (3-cm) objects when different 
spectral estimation methods are used. Figs. 10(a) and 
(c) are plotted vs. the number of independent A-lines to 
be averaged when having an 11-wavelength axial extent, 
while Figs. 10(b) and (d) are plotted vs. the axial window 
length in units of wavelength when 9 independent A-lines 
are averaged. Fig. 11 displays the depth dependence of 
the size estimation variance using the Welch method. The 
greater the depth is, the larger the variance is. This is be-
cause the measured bandwidth/ka range decreases as the 
dept MHz and the ka range was ~0.4 to 1.1, 0.4 to 1.0, 0.3 
to 0.9, and 0.3 to 0.8. Figs. 10 and 11 are both produced 
using NaN assignment of the imaginary size estimates.

Fig. 12 provides histograms of scatterer size estimates. 
The imaginary estimates were assigned to be 5 μm for each 
case, allowing us to see how many imaginary values there 
might be in a typical experiment involving the experi-
mental conditions described in this paper. Figs. 12(a)–(c) 
show estimates of scatterer size that are obtained using a 

5-wavelength window and averaging over 3 independent A-
lines using (a) a Hanning window, (b) the Welch method, 
and (c) a rectangular window. Fig. 12(d) shows estimates 
of scatterer size that are obtained using an 11-wavelength 
window and averaged over 9 independent A-lines where 
the Welch method is applied. If very small block/ROI 
sizes are used, this leads to greater spread in the size esti-
mates. Because imaginary estimates were assigned to be a 
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Fig. 8. The percent standard deviation of the scatterer size estimates us-
ing (a) 5-μm assignment of imaginary values and (b) NaN assignment of 
imaginary value at 7-cm (focus) depth and 11-wavelength window length 
vs. the number of independent A-lines averaged. The VFX9–4 trans-
ducer data were used for the curves. The theoretical values are calculated 
according to (5) assuming a rectangular window and (6).

Fig. 9. Percent standard deviation of the scatterer size estimates using 
(a) 5-μm assignment of imaginary values and (b) NaN assignment of 
imaginary values. Data are from a depth of 7  cm using the VFX9–4 
transducer and averaging spectra for 9 independent A-lines. The theo-
retical values are calculated according to (5) assuming a rectangular 
window and (6).

Fig. 7. Parametric mesh surfaces of scatterer size estimates vs. axial and 
lateral analysis block size at a 7-cm depth using the VFX9–4 transducer. 
The axial window length is in units of wavelength, the lateral block 
size is in units of the number of independent A-lines, and the Gaussian 
SAF scatterer size estimates are in units of microns. In (a) and (c), the 
imaginary scatterer size estimates are handled by discarding them, while 
in (b) and (d), imaginary scatterer size estimates are handled by assign-
ing them to be 5 μm. Note that for visualization purposes, the viewing 
angles of the graphs are different. The smaller axial and lateral resolution 
points to the paper for (a) and (c), while it points to the reader for (b) 
and (d). Figures (a) and (b) are the results calculated using the Welch 
method, while (c) and (d) are calculated using a rectangular window.



small size (5 μm), the mean value underestimated the true 
scatterer size, and Fig. 7 shows this. When the Gauss-
ian scattering model is applied, statistical fluctuations can 
more easily make the size estimates imaginary for small 
scatterers than for larger ones because the associated form 
factor is flatter. This can also be seen from (6), which in-
dicates the fractional size estimation standard deviation is 

inversely proportional to the square of the scatterer size. 
Therefore, the true values of the imaginary estimates are 
more likely to be small numbers and the scatterer size will 
be overestimated if the mean value is calculated based 
only on the real-valued estimates. From the histograms 
(Fig. 12), we see that the number of imaginary estimates 
is reduced as the analysis block size increases to 11 wave-
lengths axially and 9 independent A-lines laterally. This is 
why we see from Fig. 7 the size estimate surface becomes 
flat as the block size increases. One natural criterion based 
on scatterer size estimation accuracy for choosing data 
processing parameters is to increase the block size later-
ally or axially until stable size estimates can be obtained 
(the size estimates do not depend on the size of the data 
processing block). Averaging of more A-lines usually is 
more efficient than increasing the axial length. However, 
as the ROI goes deeper, for a minimum desired resolution 
(e.g., decided by the tumor dimension), the number of 
available independent A-lines that can be averaged later-
ally may be small. Fig. 12 also illustrates the reduction 
of size estimation variance when a larger block is used. 
Size estimates in Fig. 12(d) are more compact around the 
peak, while Fig. 12(b) has a much flatter distribution.

IV. Discussion

When the usable ka range is ideal, as for the VFX13–5 
case applied to the 48-μm glass bead scatterers (~69-μm 
effective size using Gaussian SAF) in the test phantom, 
averaging of 7 to 11 independent A-lines and 9 to 13 wave-
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Fig. 10. Size estimation errors using the VFX9–4 transducer for a deep 
(7 cm) ROI and a shallow (3 cm) ROI when different spectral estima-
tion methods are used. Panels (a) and (c) are plotted vs. the number of 
independent A-lines to be averaged when an 11-wavelength axial window 
is used, while panels (b) and (d) are plotted vs. the axial window length 
in units of wavelength when 9 independent A-lines are averaged.

Fig. 11. The depth dependence of the size estimation variance using the 
Welch method vs. (a) number of independent A-lines to be averaged 
when an 11-wavelength window is used and (b) window length when 9 
independent A-lines are averaged. Data from the VFX9–4 transducer 
were used for these curves. The theoretical values are calculated accord-
ing to (5) assuming a rectangular window and (6).

Fig. 12. Histograms of scatterer size estimates from different blocks, 
computed for data from the test phantom using the VFX9–4 transducer. 
Any estimate that resulted in an imaginary value is assigned to be 5 μm. 
Panels (a)–(c) are estimated using a 5-wavelength window and averaged 
over 3 independent A-lines using (a) a Hanning window, (b) the Welch 
method, and (c) a rectangular a window. Panel (d) was obtained using 
an 11-wavelength window and averaged over 9 independent A-lines using 
the Welch method.



length windows are good choices. For a block size larger 
than these values, the variance drops very slowly, and 
the improved precision does not justify the loss of resolu-
tion. The standard deviations are within 8% in this set-
ting, which is considered to be excellent. For the VFX13–5 
transducer, referring to Fig. 1(a), these numbers are equiv-
alent to 1.8 to 2.6 mm axially and 1.7 to 2.8 mm laterally 
around or shallower than the transmit focus. For objects 
deeper than the transmit focus, larger blocks would need 
to be used with subsequent poorer resolution.

To measure BSC and scatterer size for deeper objects, 
a lower frequency transducer, e.g., VFX9–4 should be 
used; however, the available bandwidth becomes smaller. 
Because of the low frequency, the ka range is not ideal for 
scatterer size estimates in the present phantom. Accord-
ing to (4), the precision also is reduced, and the preci-
sion becomes even worse for small scatterers. Compared 
with the VFX13–5 at shallow depths, the beam width of 
the VFX9–4 transducer at greater depths are significantly 
broader. Therefore, for the same lateral resolution, the 
number of effective, independent A-lines to be averaged 
becomes less. All these factors make the work of estimat-
ing scatterer sizes more challenging for deeper objects.

As exemplified by Figs. 8–10 for large uniform objects, 
if the axial window length can be increased to more than 
15 to 20 wavelengths and averaging can be done over 15 
independent A-lines, the size estimation accuracy and 
precision becomes progressively more independent of the 
window type. For large amounts of data, the spectral es-
timations themselves are more accurate, and the window 
type contributes less to the resultant shape of the spec-
trum.

Applying either the rectangular window or the Welch 
method is better than using a Hanning or Hamming win-
dow (Hanning and Hamming results are almost identical). 
This may be explained as follows. Although a rectangu-
lar window suffers from spectral leakage and the results 
fit the actual BSC vs. frequency worse than when using 
the Welch method, as the T-values show, it provides bet-
ter overall spectral resolution. According to (3), better 
spectral resolution improves the size estimation precision. 
So, either a rectangular window or the Welch method is 
preferred over the Hanning or Hamming window for scat-
terer size estimations. The Welch method gives the best 
reference phantom method BSC measurement, more sta-
ble estimation as the block size changes, and potentially 
better performance on reference-phantom-based attenua-
tion estimations over a rectangular window. Although the 
computational load of the multitaper method is several 
times higher than that of the Welch method, Figs. 8 and 9 
show moderate improvements on scatterer size estimation 
using the multitaper method, particularly when the anal-
ysis block size is small. This may turn out to be useful for 
scatterer size estimations in more heterogeneous regions. 
More detailed investigation on the multitaper method will 
be reported later using both phantom and in vivo data.

Using the Welch method or a rectangular window for 
the VFX9–4 transducer data for depths up to around 

7 cm, with reasonably accurate attenuation compensation 
[40], a block size of 10 to 15 wavelengths axially and 7 to 
13 independent A-lines laterally, is considered to be the 
best trade-off between accuracy, precision, and resolution. 
If using larger (or smaller) sizes, the improvement of pre-
cision (or resolution) does not justify the loss of resolution 
(or precision). In this case, better than 10% accuracy and 
30% precision can be obtained for a uniform phantom. 
The relatively large variance here is partially because of 
the small size of the scatterers in the test phantom and, 
therefore, a suboptimal ka range). For larger scatterer 
sizes, like normal liver tissue [41], the variance is expected 
to be smaller. However, for highly cellular malignant tu-
mors, which appear to have smaller scatterer sizes [11], 
[41], the large variance may be a challenge. For the depths 
considered (1 to 5 cm for the VFX13–5 and 2 to 9 cm for 
the VFX9–4), the shallower the objects are, the larger 
the useful bandwidth is and the smaller is the correlation 
between A-lines. Because of the depth dependence of the 
size estimation variance, one should take into account the 
ROI depth when choosing the resolution for data pro-
cessing or using an adaptive resolution setting. Also, one 
should always try to find a scan window that views the 
objects in question at the smallest possible depth.

If imaging an object located between 5 and 8  cm in 
depth using the VFX9–4 transducer, the optimal block 
size of 10 to 15 wavelengths by 7 to 13 independent A-
lines covers dimensions of 3.5 to 5 mm (in the axial direc-
tion) by 3.5 to 7 mm (in the lateral direction). For objects 
with small scatterer sizes or in the presence of high overall 
attenuation, thereby reducing the effective frequency, the 
block size may need to be even larger. In many cases, a 
large lateral block size cannot be achieved because of lo-
cal inhomogeneities and resolution requirements. In these 
cases, spatial compounding [22], [23] can be used to im-
prove precision of scatterer size estimations.

For the sake of improving the scatterer size estimation 
accuracy and precision, increasing the axial dimensions of 
the analysis block is interchangeable with increasing the 
lateral size (hence, the number of independent A-lines). 
To combine the axial and lateral parameters with trans-
ducer properties, a general and likely better approach is 
to define an approximate spatial equivalence of the time-
bandwidth product (W) assuming the data are stationary 
within the analysis block. Thus,

	 W
Z
L

N= × eff,	 (10)

	 Y k L= 0 ,	 (11)

where Z is the axial block size, L is the correlation length, 
Y is the inverse of the fractional bandwidth of the echo 
signal, k0 is the spatial equivalent center frequency of the 
spectra, and Neff is the number of effective, independent 
A-lines in the analysis block. These are similar to the 
definitions in Bilgen and Insana [42], though they did not 
define the fractional bandwidth in detail. Therefore, the 
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physical meaning of this equivalent time-bandwidth prod-
uct is the number of independent samples within each 
analysis block. The Z/L term is equivalent to the pulse 
length used by Oelze and O’Brien [20]. They did not state 
in detail how the pulse length is measured, but based it 
on the signal from a planar reflector. Because their tumor 
model was also imaged in a water path, the approach is 
reasonable. However, in our in vivo experiments, the pulse 
duration of the echo signals cannot be measured conve-
niently because the signal from the reference phantom is 
an extended waveform.

If the axial block size is defined in units of the center 
frequency wavelength of the echo signal, from (10) and 
(11), the time-bandwidth product can be calculated as

	 W n n
f

f
N

f
f

N= × =× × × ×l
l0

0 0 0

1 D D
eff eff,	 (12)

where n is the number of center frequency wavelengths 
in the axial window. The transmit pulse length (−6 dB) 
of the VFX9–4 transducer at the 6.15-MHz nominal fre-
quency setting is measured to be around 1.6 wavelengths, 
which is approximately the same as the value listed in 
the Siemens Antares manual. There is no common agree-
ment on what spectral value relative to the peak should be 
used to calculate the fractional bandwidth for ultrasound 
tissue characterization. The fractional bandwidth is of-
ten defined at the FWHM power in the signal-processing 
field. Therefore, for a simple approximation, we used the 
−3-dB fractional bandwidth. It is weakly depth depen-
dent. Around the focus (7  cm), the receiving fractional 
bandwidth is ~0.45, which is smaller than the ~0.6 trans-
mit fractional bandwidth. The fractional bandwidth of 
the Siemens VFX13–5 transducer is similar to that of the 
VFX9–4. Thus, for these transducers, the optimal time-
bandwidth product is approximately 0.45n × Neff, accord-
ing to (12). Based on the observations we reported above, 
we suggest that the analysis block should contain at least 
30 independent samples but the number should be kept 
less than 80 for spatial resolution considerations.

It is desirable to keep the axial size of the analysis 
block small so that the point attenuation correction is 
valid [25], but large enough to include at least 3 or 4 pulse 
lengths because of the uncertainty principle. Therefore, 
sometimes, the lateral dimensions of the block need to 
contain 7 to 12 effective, independent A-lines. Therefore, 
to keep the lateral resolution small and not to violate the 
spatial stationary assumption, spatial spectral compound-
ing techniques [23], [25] are suggested.

V. Conclusions

Trade-offs for data acquisition and processing param-
eters are studied for reference-phantom-based backscat-
ter and scatterer size estimations with a clinical scanner. 
Power spectra estimations using the Welch method or sim-
ply a rectangular window performed better in terms of ac-

curacy and precision than those using Hamming or Hann 
window for backscatter and scatterer size estimations. 
To balance the trade-off between spatial resolution and 
scatterer size estimation accuracy and precision, results 
indicate the analysis block size should be approximately 
10 times the center frequency wavelength in the axial di-
rection and include 10 independent A-lines laterally. For 
an optimal ka range (0.5–1.6), values can be as small as 7 
wavelength windows by 7 independent A-lines, but larger 
analysis block sizes may be needed in cases where the ka 
range is suboptimal.

Thus, researchers should analyze specific cases taking 
into account the experimental conditions, correlations be-
tween A-lines, and expected scatterer properties. In our 
study, the scatterer size estimation accuracy and precision 
were both within 5% when 0.5 < ka < 1.6 using 7 wave-
lengths by 7 independent A-lines analysis block dimen-
sion. The results may be generalized to other transducer/
scatterer size combinations with similar ka ranges. Spatial 
compounding techniques can improve the precision when 
the optimal block size is not achievable because of local 
inhomogeneities.
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