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The solution to the scattering of an incident pressure wave by an arrangement of eccentric cylinders
embedded inside a pair of concentric cylinders is derived here using a combination of T-matrix and
mode-matching approaches. This method allows the generation of synthetic data from relatively
complex structures to be used for the validation of acoustic tomography methods. An application of
the solution derived here is illustrated by reconstructing sound speed and density profiles from a
complex phantom using inverse scattering. © 2010 Acoustical Society of America.
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I. INTRODUCTION

The scattering of a cylindrical wave by an arrangement
of eccentric cylinders is derived here in order to validate
inverse scattering routines with scatterers more complex than
a single homogeneous cylinder. Works dealing with the scat-
tering by two concentric fluid cylinders,1 two2 and multiple3

rigid parallel cylinders, two4 and multiple5 fluid parallel cyl-
inders, two eccentric fluid cylinders,6,7 and multiple eccentric
cylinders embedded in a circular cylinder8 can be found in
the literature. The work presented here extends the scope of
the work in Ref. 8 by studying the scattering by N circular
cylinders embedded inside a coated cylinder, as shown in
Fig. 1.

The approach presented here is a combination of the
T-matrix formulation and mode-matching techniques, and
considers changes in compressibility, density, and attenuation
�unlike the work in Ref. 8 that only considers changes in
refractive index�.

II. CALCULATION OF THE SCATTERING
COEFFICIENTS

In the following derivation, the background has a wave
number k0 and acoustic impedance Z0. For the other cylin-
ders, the complex wave numbers kn and impedances Zn are
defined as kn= �� /cn�+ i�n and Zn=�ncn / �1+ i�ncn /��,
where cn, �n, and �n are the speed of sound, density, and
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attenuation coefficient in the n-th subregion. The radius of
the n-th cylinder is denoted by an. The wave number, imped-
ance, and outer radius of the coating are denoted by kc, Zc,
and ac, respectively. The acoustic field inside cylinder 1 can
be written as

p1�r�o� = �
m=−�

�

AmJm�k1ro�eim�o

+ �
n=2

N+1

�
p=−�

�

Bp,nHp�k1ron�eip�on, �1�

where Jm� · � is the m-th order Bessel function, Hm� · � is the
m-th order Hankel function of the first kind, r�o= �ro ,�o� are
the polar coordinates of the observation point, r�n= �rn ,�n� are
the polar coordinates of the center of the n-th cylinder, and
r�on=r�o−r�n. The second sum in Eq. �1� represents the fields
produced by the embedded cylinders. The T-matrix
approach9 can be used to relate the amplitudes of the Am and

Bp,n terms. First, a matrix T̄s is used to express the Bessel
waves relative to the center of each one of the N embedded

cylinders. The matrix T̄s is composed of M blocks T̄s
h of size

N�Mp, where M and Mp are the number of terms used to
expand the first and second infinite sums in Eq. �1�. This can
be expressed in matrix form as

ēt = T̄s · ā , �2�

T̄s = � ¯ �T̄m=−1�T �T̄m=0�T �T̄m=1�T
¯ �T, �3�
s s s
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�T̄s
m�np = Jp−m�k1rn�e−i�p−m���n+��, �4�

where ā is an Mp length vector with the amplitudes of the
Bessel wave harmonics and ēt is an �M �N� vector with the
translated amplitudes of the Bessel waves. In the notation

above, X̄T represents the transpose of a matrix X̄. The har-
monics ēt can be related to the Hankel harmonics in Eq. �1�
as

b̄t = �Ī − D�R̄� · Ā�−1 · D�R̄� · ēt. �5�

where b̄t is an �M �N� vector with the Bp,n coefficients and
D� · � is an operator that transforms a vector into a diagonal

matrix. The �M �N� vector R̄ contains the single-cylinder
scattering coefficients given by

R̄ = ��R̄n=2�T �R̄n=3�T
¯ �R̄n=N+1�T�T, �6�

�R̄n�p =

1

Zrn
Jp�k1an�Jp��knan� − Jp�knan�Jp��k1an�

Jp�knan�Hp��k1an� −
1

Zrn
Jp��knan�Hp�k1an�

, �7�

where the “ �” symbol denotes derivative with respect to the
total argument and Zrn=Zn /Z1. The elements of the �M
�N�� �M �N� T-matrix Ā are given by

Ā = �
Ā11 Ā12 ¯ Ā1M

Ā21 Ā22 ¯ Ā2M

]

ĀM1 ĀM2 ¯ ĀMM

� , �8�

�Āmn�pq = �0 if p = q

Hm−n�k0rpq�e−i�m−n��pq, else,
	 �9�

where �rpq ,�pq� is the polar representation of the vector �r�p

−r�q� containing the location of the center of cylinder p rela-
tive to the center of cylinder q, with p ,q� �2,N+1�. Enforc-
ing mode-matching at the cylindrical coating becomes sim-
pler if Eq. �1� is expressed in terms of Bessel and Hankel
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FIG. 1. Scatterer formed by an arrangement of circular cylinders embedded
inside a coated circular cylinder.
fields centered at the origin. In particular, if the observation
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point r�o satisfies 
r�o
� 
r�n
, ∀n� �2,N+1�, the addition theo-
rem of Hankel functions10 allows the pressure field to be
expressed as

p1�r�o� = �
m=−�

�

�AmJm�k1ro� + BmHm
�1��k1ro��eim�o, �10�

where the relationship between the Bm and Bp,n coefficients
is given by

b̄ = T̄ · b̄t, �11�

T̄ = � ¯ T̄h=−1 T̄h=0 T̄h=1
¯ � , �12�

�T̄h=m�pn = Jp−m�k1rn�e−i�p−m��n, �13�

where T̄ is an �M � P�� �M �M� transition matrix, and b̄ is
an Mp length vector containing the coefficients Bm. Overall,
the relationship between the Am and Bm coefficients can be
expressed as

b̄ = P̄ · ā ,

P̄ = T̄ · �Ī − D�R̄� · Ā�−1 · D�R̄� · T̄s. �14�

The expression in Eq. �14� is valid, in particular, for points
close to the edge of cylinder 1. In the cylindrical coating, the
field can be expressed as

p�r�o� = �
m=−�

�

�CmJm�kcro� + DmHm�kcro��eim�o, �15�

where the first sum is the incident field and the second one is
the scattered field. The magnitudes of the Am, Bm, Cm, and
Dm coefficients can be related using the continuity of both
pressure and normal particle velocity at ro=a1. Therefore,
one can express

D�R̄jj� · ā + D�R̄hj� · b̄ = c̄ , �16�

D�R̄jh� · ā + D�R̄hh� · b̄ = d̄ , �17�

where c̄ and d̄ are Mp length vectors with the coefficients Cm

and Dm, respectively, and R̄jj, R̄hj, R̄jh, and R̄hh are Mp length
vectors containing the transmission coefficients given by

�R̄jj�m =

Jm�k1a1�Hm� �kca1� −
1

Zrc
Jm� �k1a1�Hm�kca1�

Jm�kca1�Hm� �kca1� − Jm� �kca1�Hm�kca1�
, �18�

�R̄hj�m =

Hm�k1a1�Hm� �kca1� −
1

Zrc
Hm� �k1a1�Hm�kca1�

Jm�kca1�Hm� �kca1� − Jm� �kca1�Hm�kca1�
,

�19�

�R̄hj�m = −

Jm�k1a1�Jm� �kca1� −
1

Zrc
Jm� �k1a1�Jm�kca1�

Jm�kca1�Hm� �kca1� − Jm� �kca1�Hm�kca1�
,

�20�

R. J. Lavarello and M. L. Oelze: Letters to the Editor



�R̄hh�m =

1

Zrc
Hm� �k1a1�Jm�kca1� − Hm�k1a1�Jm� �kca1�

Jm�kca1�Hm� �kca1� − Jm� �kca1�Hm�kca1�
, �21�

where Zrc=Z1 /Zc. Similarly, the field in the background can
be written as

p�r�o� = �
m=−�

�

�EmJm�k0ro� + FmHm�k0ro��eim�o, �22�

where the first term represents the incident field and the sec-
ond term represents the scattered field. The coefficients Em

are known and depend on the type of illumination used. For
example, when using a line source located at R� s�Rs ,�s� the
coefficients Em are given by Em=Hm

�1��k0Rs�e−im�s. The coef-
ficients Fm are the unknowns that need to be solved in order
to calculate the scattered field. The relationships between the
coefficients Cm, Dm, Em, and Fm are given by

D�R̄jj2� · c̄ + D�R̄hj2� · d̄ = ē , �23�

D�R̄jh2� · c̄ + D�R̄hh2� · d̄ = f̄ , �24�

where ē and f̄ are Mp length vectors containing the Em and
Fm coefficients, respectively, and the transmission coeffi-

TABLE II. Mean speed of sound and density values corresponding to th
approach with different fmin values.

Cylinder
No.

Center
position Radius

�	c ,	��
ideal

1 �0,0� 8
0 �outer�
7
0 �inner�

�1.8% ,−1.5%

2 �0,0� 7
0 �−1.8% ,1.5%
3 �1.8
0 ,1.8
0� 2
0 �2.5% ,−2% �
4 �−2.4
0 ,−2.4
0� 1.6
0 �−2.5% ,2% �
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FIG. 2. Numerical validation of the scattering solution. �a� 	c of the phan-
tom. �b� 	� of the phantom. �c� Ratio � /k0 of the phantom. �c� Scattered
field produced by the phantom calculated using the solution presented in
Sec. II �solid� and the numerical solver from Ref. 11 �dots�.
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cients R̄jj2, R̄hj2, R̄jh2, and R̄hh2 can be found using Eqs.
�18�–�21� replacing a1 by ac, kc by k0, k1 by kc, and Zrc by
Zc /Z0. Therefore, the Am coefficients can be found by using

ā = �D�R̄jj2� · M̄1 + D�R̄hj2� · M̄2�−1 · ē , �25�

M̄1 = D�R̄jj� + D�R̄hj� · P̄ , �26�

M̄2 = D�R̄jh� + D�R̄hh� · P̄ . �27�

Finally, the scattering coefficients Fm can be obtained by
using

f̄ = �D�R̄jh2� · M̄1 + D�R̄hh2� · M̄2� · ā . �28�

These coefficients Fm are the ones needed to calculate the
scattered field using the second term in Eq. �22�.

III. NUMERICAL VALIDATION

An example of the scattering solution derived in this
work is shown in Fig. 2. The dimensions, speed of sound,
and density contrasts 	c and 	�, and � /k ratios of all cyl-
inders are given in Table I. The incident field was produced
by a line source located at x=300
. The values of M and Mp

for the scattering solution were set to 51 and 121, respec-
tively. The scattered field was also calculated using the nu-
merical solver presented in Ref. 11 with a grid size of 
 /20.
The root mean square error between both calculated scattered
fields was only 0.4%, which suggests a proper convergence
of the solution derived in this manuscript even in the pres-
ence of attenuation. The results are shown in Fig. 2.

Although in principle there should be no restrictions on
the sizes and acoustic properties of the embedded cylinders
as long as they remain nonoverlapping, special care must be
taken when reconstructing scatterers consisting of regions

TABLE I. Properties of the scatterer used for numerical validation of the
scattering solution from Sec. II.

Cylinder Center Radius
	c
�%�

	�
�%� � /k

1 �0,0� 8
0 �outer� 6 −6 0.1
7
0 �inner�

2 �0,0� 7
0 −2 −1 0
3 �0,2.8
0� 1.6
0 −3 5 0.15
4 �−2.4
0 ,−2.4
0� 2.4
0 4 2 0.2
5 �2.4
0 ,−2.4
0� 
0 2 −4 0

onstruction of a complex scatterer using the multiple frequency T-matrix

�	c ,	��
fmin= f0

�	c ,	��
fmin= f0 /16

�	c ,	��
fmin= f0 /64

�1.68% ,−2.5% � �1.6% ,−1.31% � �1.6% ,−1.51% �

�−1.78% ,2.88% � �−1.76% ,2.09% � �−1.76% ,1.67% �
�2.36% ,−3.56% � �2.32% ,−1.61% � �2.32% ,−2.13% �
�−2.49% ,4.11% � �−2.48% ,2.99% � �−2.49% ,2.34% �
e rec

�

�
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that exhibit markedly different sizes or acoustic contrasts. In
these cases, the finite precision of currently available
floating-point arithmetic systems may prevent the proper
computation and inversion of all the matrices involved in the
solution presented in Sec. II.

IV. APPLICATION TO INVERSE SCATTERING
PROBLEMS

The scattering solution presented in Sec. II was used to
generate synthetic scattered data from a complex object in
order to perform density imaging using the multiple fre-
quency T-matrix approach.11 The performance of this
method when imaging homogeneous cylindrical objects has
been reported previously.12 Data were generated at frequen-
cies f0 , f0 /2, f0 /4, . . . , fmin and processed sequentially start-
ing from the minimum frequency fmin. Details of the imple-
mentation of the algorithm are given in Ref. 12. The
properties and mean reconstructed values for all cylinders
using fmin values of f0, f0 /16, and f0 /64 are given in Table
II. The reconstructions are shown in Fig. 3.

The speed of sound reconstructions exhibited high nu-
merical accuracy independently of the value of fmin. As for
the density reconstructions, the maximum reduction in the
bias between the ideal and reconstructed density values for a
homogeneous circular cylinder of radius a should occur
when kmina�1 according to the results in Ref. 12. Therefore,
the cylindrical inclusions of radius 1.6
0 and 2
0 should al-
ready exhibit the minimum achievable bias when using fmin

= f0 /16. However, the bias was reduced even further when
using fmin= f0 /64. Therefore, these results suggest that the
absolute density values of a complex imaging target may not
be obtained unless convergence is guaranteed for the overall

Ideal fmin = f0
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FIG. 3. Speed of sound �top row� and density �bottom row� images obtain
Second columns: reconstructions using fmin values of f0, f0 /16, and f0 /64,
structure when using the T-matrix approach.
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V. CONCLUSIONS

The solution for the scattering produced by multiple par-
allel cylinders embedded inside a coated cylinder taking into
account changes in compressibility, density, and acoustic at-
tenuation has been presented. The applicability of the scat-
tering solution presented here was demonstrated by analyz-
ing the convergence of a method for variable density inverse
scattering when imaging objects with multiple levels of spa-
tial variations.
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