SUBSURFACE ACOUSTIC IMAGING IN A HIGHLY ATTENUATING MATERIAL

BY

JONATHAN MAMOU

Diploma, Ecole Nationale Supérieure des Télécommunications, Paris, 2000

THESIS

Submitted in partial fulfillment of the requirements
for the degree of Master of Science in Electrical Engineering
in the Graduate College of the
University of Illinois at Urbana-Champaign, 2002

Urbana, Illinois
To my family and my friends.
A ma famille et mes amis.
ACKNOWLEDGMENTS

I would like to thank my research advisor, Professor William D. O’Brien, for his patience, confidence, encouragement, and guidance throughout my research. I am also very grateful to Catherine Frazier and Nail Cadalli for their steady support. I would like to acknowledge Michael Oelze for always being available to answer my questions. I thank Donald Yuhas and all the team from Industrial Measurements Systems, Inc. for their dedication and help with the project. Finally, I sincerely thank all the students and members of the Bioacoustics Research Laboratory for always being helpful.

I also acknowledge the United States Army (contract DACA42-00-C-0028) for the financial support of the subsurface acoustic imaging project.
TABLE OF CONTENTS

1 **INTRODUCTION** ... 1
 1.1 Imaging in Sand .. 2
 1.1.1 Goal .. 2
 1.1.2 Existing techniques 2
 1.1.3 Acoustic imaging 3
 1.2 Acoustical Properties of Sand 4
 1.2.1 Experimental measurements 5
 1.2.2 Frequency-depth of penetration trade-off 6
 1.3 Organization of this Thesis 7

2 **EXPERIMENTAL SYSTEM** 8
 2.1 Description .. 8
 2.2 Sand Properties .. 9
 2.3 Transducers ... 9
 2.3.1 Transmitters and receiver 9
 2.3.2 Combined beam patterns 10
 2.3.3 Transmitters comparison 11

3 **IMAGING TECHNIQUES** 26
 3.1 B-Mode Technique 26
 3.1.1 Description 26
 3.1.2 Pulse choice trade-off 27
 3.1.3 Enhancements 29
 3.2 Delay-and-Sum Beamforming 30
 3.2.1 Description 31
 3.2.2 Dynamic focusing 32
 3.3 Reconstruction Scripts 32
 3.4 Simulation of Received Signals 33
 3.4.1 Model of acoustic propagation in sand 33
 3.4.2 Computer program 35
 3.4.3 Parameter file 35
 3.4.4 Points scatterers file 37
 3.4.5 Use of the program 38

4 **RESULTS** ... 43
 4.1 Simulations ... 43
 4.1.1 Single target in a pulse-echo mode simulation 43
 4.1.2 Time gain compensation validation 44
 4.1.3 Delay-and-sum beamforming simulations 45
 4.2 Experimental Images 46
4.2.1 Targets ... 47
4.2.2 B-mode images 47
4.2.3 Delay-and-sum images 48
4.3 Direct Wave Issue 49
4.3.1 B-mode images in sandbox without target . 49
4.3.2 Received direct wave signal and imaging issues . 50
4.4 Solutions Tried to Mitigate the Direct Wave 51
4.4.1 Sound absorbing material 51
4.4.2 Water layer 52
4.4.3 Destructive summation 52

5 CONCLUSIONS AND FUTURE WORK 88
5.1 Experimental System 88
5.1.1 Experimental system improvement 88
5.2 Imaging ... 89
5.2.1 Resolutions 90
5.2.2 Improvement of the delay-and-sum beamforming technique . 90
5.2.3 New imaging approaches 91
5.2.4 Direct wave problem 91
5.3 Simulation .. 93
5.3.1 Improvement of our model 93
5.3.2 New simulation approach 94

APPENDIX A: DELAY-AND-SUM BEAMFORMING
SCRIPTS .. 95
A.1 Beamformer.m Script 95
A.2 BeamformerTGC.m Script 102
A.3 BeamformerDFTGC.m Script 109
A.4 BeamformerDFTGCsmooth.m Script 117

APPENDIX B: SIMSIGNAL PROGRAM CODE 127

APPENDIX C: SIMULATION PARAMETER AND POINT
SCATTERER FILES 133
C.1 Single Target in a Pulse-Echo Configuration 133
C.1.1 Parameter file 133
C.1.2 Point scatterer file 134
C.2 Time Gain Compensation Validation Simulation 134
C.2.1 Parameter file 134
C.2.2 Point scatterer file 136
C.3 Delay-and-Sum Beamforming Simulation 136
C.3.1 Parameter file 136
C.3.2 Point scatterer file 137

REFERENCES .. 138
LIST OF FIGURES

2.1: Picture of the experimental system. 14
2.2: Block diagram describing the experimental system. 15
2.3: Figure describing the axis conventions of the experimental system. The figure is in the x-y plane, which is the soil surface. ... 16
2.4: Picture showing the monitor of the computer, the oscilloscope, the waveform generator, and the three National Instruments cards (top right). ... 17
2.5: Picture showing MST (right) and Terr (left). 18
2.6: Picture showing the PST. 19
2.7: Beam pattern of MST in the sand. MST is transmitter, Terr is receiver. Terr is buried 18 cm deep. Transmitted signal: 2 kHz, two cycles and PRF 10 Hz. 20
2.8: Beam pattern of PST in the sand. PST is transmitter, Terr is receiver. Terr is buried 18 cm deep. Transmitted signal: 2 kHz, two cycles and PRF 10 Hz. 21
2.9: Spectra of received signals. Source signal is a four-cycle pulse for all four cases. Top signals were acquired with a transmitted frequency of 1 kHz, and bottom signals with a transmitted frequency of 2 kHz. For the left signals the transmitter was PST, and for the right signals it was MST. The receiver was in all four cases the Terraphone that was buried at a depth of 18 cm. .. 22
2.10: Spectra of received signals. Source signal is a four-cycle pulse for all four cases. Top signals were acquired with a transmitted frequency of 3 kHz, and bottom signals with a transmitted frequency of 4 kHz. For the left signals the transmitter was PST, and for the right signals it was MST. The receiver was in all four cases the Terraphone that was buried at a depth of 18 cm. .. 23
2.11: Spectra of received signals. Source signal is a 15-cycle pulse for all four cases. Top signals were acquired with a transmitted frequency of 1 kHz, and bottom signals with a transmitted frequency of 2 kHz. For the left signals the transmitter was PST, and for the right signals it was MST. The receiver was in all four cases the Terraphone that was buried at a depth of 18 cm. .. 24
2.12: Spectra of received signals. Source signal is a 15-cycle pulse for all four cases. Top signals were acquired with a transmitted frequency of 3 kHz, and bottom signals with a transmitted frequency of 4 kHz. For the left signals the transmitter was PST, and for the right signals it was MST. The receiver was in all four cases the Terraphone that was buried at a depth of 18 cm. 25

3.1: Description of the B-Mode imaging technique. Top: Raw echo signal. Bottom: Low-pass-filtered raw echo signal (solid) and envelope detected by Hilbert transform (dashed). 39

3.2: Description of the B-Mode imaging technique. Top: Envelope of filtered echo signal in dB. Bottom: Display of the dB scale envelope to form one single column of the picture. 40

3.3: Geometry used to compute delays when a receiving array is simulated. The figure is in the x-y plane which is the sand surface. 41

3.4: Geometry used to compute delays when a receiving array is simulated. The figure is in the x-z plane. 42

4.1: Pulse-echo simulation with a single point target reflector at a depth of 0.25 m. Reconstructed without DF and TGC. 55

4.2: Five point targets reconstructed from simulated data, single receiving element, without TGC. Targets located at depths 0.05 m, 0.15 m, 0.25 m, 0.35 m, and 0.45 m. 56

4.3: Five point targets reconstructed from simulated data, single receiving element, with TGC. Targets located at depths 0.05 m, 0.15 m, 0.25 m, 0.35 m, and 0.45 m. 57

4.4: Five point targets reconstructed from simulated data, eight-element line array on receive, without TGC. Targets located at depths 0.05 m, 0.15 m, 0.25 m, 0.35 m, and 0.45 m. The array was along the direction of scanning, and the elements were 1.8 cm apart. Dynamic focusing was used with 20 different depths of focus. DF was accomplished without smoothing. 58

4.5: Five point targets reconstructed from simulated data, eight-element line array on receive, with TGC. Targets located at depths 0.05 m, 0.15 m, 0.25 m, 0.35 m, and 0.45 m. The array was along the direction of scanning, and the elements were 1.8 cm apart. Dynamic focusing was used with 20 different depths of focus. DF was accomplished without smoothing. 59

4.6: Five point targets reconstructed from simulated data, eight-element line array on receive, without TGC. Targets located at depths 0.05 m, 0.15 m, 0.25 m, 0.35 m, and 0.45 m. The array was along the direction of scanning, and the elements were 1.8 cm apart. Dynamic focusing was used with 20 different depths of focus. DF was accomplished with smoothing. 60
4.7: Five point targets reconstructed from simulated data, eight-element line array on receive, with TGC. Targets located at depths 0.05 m, 0.15 m, 0.25 m, 0.35 m, and 0.45 m. The array was along the direction of scanning, and the elements were 1.8 cm apart. Dynamic focusing was used with 20 different depths of focus. DF was accomplished with smoothing.

4.8: Pictures showing the targets used in the experiments. The big steel plate and two small plates. The ruler at the right is 50 cm long and 3 cm wide.

4.9: Scan geometry used to reconstruct B-mode images.

4.10: B-mode image. MST is transmitter, Terr is receiver, and the big steel plate is buried 10 cm deep as target. Transmitted pulse: 2 kHz, two cycles.

4.11: Geometry of the four plates stacked together as target.

4.12: B-mode image. MST is transmitter, Terr is receiver, and four plates as target (Figure 4.11). Transmitted pulse: 2 kHz, two cycles.

4.13: B-mode image. MST is transmitter, Terr is receiver, and two plates as target buried 12 cm apart at a depth of 17 cm. Transmitted pulse: 2 kHz, two cycles.

4.14: Scan geometry used to reconstruct delay-and-sum images. On receive a five-element linear array is used.

4.15: Delay-and-sum image. MST is transmitter, Terr is receiver, and four plates as target (Figure 4.11). On receive a five-element linear array is used. Transmitted pulse: 2 kHz, two cycles. Image reconstructed using a single depth of focus of 0.1 m.

4.16: Delay-and-sum image. MST is transmitter, Terr is receiver, and four plates as target (Figure 4.11). On receive a five-element linear array is used. Transmitted pulse: 2 kHz, two cycles. Image reconstructed using 20 depths of focus on a 1-m range.

4.17: Delay-and-sum image. MST is transmitter, Terr is receiver, and one plate as target buried 10 cm deep. On receive a five-element linear array is used. Transmitted pulse: 2 kHz, two cycles. Image reconstructed using a single depth of focus of 0.1 m.

4.18: Delay-and-sum image. MST is transmitter, Terr is receiver, and one plate as target buried 10 cm deep. On receive a five-element linear array is used. Transmitted pulse: 2 kHz, two cycles. Image reconstructed using 20 depths of focus on a 1-m range.

4.19: Linear scan across the sand surface without targets. MST is transmitter and Terr is receiver. The MST-Terr distance is 13 cm, and the source electrical signal is 2 kHz, two cycles.

ix
4.20: Linear scan across the sand surface without targets. MST is transmitter and Terr is receiver. The MST-Terr distance is 16 cm, and the source electrical signal is 2 kHz, two cycles. 74
4.21: Linear scan across the sand surface without targets. MST is transmitter and Terr is receiver. The MST-Terr distance is 20 cm, and the source electrical signal is 2 kHz, two cycles. 75
4.22: Linear scan across the sand surface without targets. MST is transmitter and Terr is receiver. The MST-Terr distance is 25 cm, and the source electrical signal is 2 kHz, two cycles. 76
4.23: Linear scan across the sand surface without targets. MST is transmitter and Terr is receiver. The MST-Terr distance is 30 cm, and the source electrical signal is 2 kHz, two cycles. 77
4.24: Figure showing that the beginning in time of the parasite signal from Figures 4.19–4.23 is linear with the MST-Terr distance. Solid is the curve based on five points obtained from the five figures. Dashed is the linear interpolation, the slope is 149.6 m/s. 78
4.25: Example of a received signal from the sand box without target. MST is transmitter and Terr is receiver. The MST-Terr distance is 16 cm, and the source electrical signal 2 kHz, two cycles. Top: Echo signal. Bottom: Spectrum amplitude. 79
4.26: Materials used to modify the coupling between the transducers. Top: Neoprene, 6 mm thick. Middle: Red SOAB (Wallgone, Consumer Usage Laboratories, Inc.), 1 cm thick. Bottom: Silver SOAB (Goodrich & Co.), 2.5 cm thick. 80
4.27: B-mode image in sandbox with a small plate buried 22 cm deep. Silver SOAB was used. MST is transmitter and Terr is receiver. The MST-Terr distance is 13 cm, and the source electrical signal is 2 kHz, two cycles. 81
4.28: Example of a received signal from over a plate buried 22 cm deep. Silver SOAB was used. MST is transmitter and Terr is receiver. The MST-Terr distance is 13 cm, and the source electrical signal is 2 kHz, two cycles. Top: Echo signal. Bottom: Spectrum amplitude. 82
4.29: Summation of 16 phase-shifted (spreading one wavelength) four-cycle sine waves each with unit amplitude. 83
4.30: Summation of 16 phase-shifted (spreading one wavelength) and attenuated four-cycle sine waves each with unit amplitude. 84
4.31: Scan scheme used to try to mitigate the direct wave. View from the top. For each transmitter position, eight received signals were acquired. The center-to-center distance from the transmitter to the receiver varied from 20 cm to 35 cm. 85

x
4.32: Reconstructed pictures at different depths of focus, where an eight-element receiving array covering two wavelengths of the direct wave was used. This geometry is described in Figure 4.31. MST is transmitter, Terr is receiver, and the source electrical signal is 2 kHz, two cycles. The target was a small plate buried at a depth of around 18 cm, whose longest side was across the direction of scanning. The focus depths from left to right and from top to bottom are 0, 9 cm, 18 cm, and \(\infty \).

4.33: Reconstructed picture using DF at 20 different depths, where an eight-element receiving array covering two wavelengths of the direct wave was used. This geometry is described in Figure 4.31. MST is transmitter, Terr is receiver, and the source electrical signal is 2 kHz, two cycles. The target was a small plate buried at a depth of around 18 cm, whose longest side was across the direction of scanning.