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CHAPTER 2

THEORETICAL ANALYSIS OF ASYMMETRIC
DISTORTION

One of the nonlinear effects that limit our ability to do voltage-based linear

extrapolation is asymmetric distortion.  Asymmetric distortion results from the combined

effects of nonlinearity and diffraction.  The only attempt to obtain closed form

expressions for this distortion in the literature has been done by Ostrovskii and Sutin

[1975] with Sutin [1978] further elaborating on the theory.  Since then, several

researchers have questioned the quantitative results of their work [Lucas and Muir, 1983;

Bacon, 1984], but no one has proposed a more complete or alternative analysis.  In this

chapter, we shall work through a modified version of Ostrovskii and Sutin’s method,

discuss some inherent flaws in their analysis, and then discuss some insights provided by

their method.

2.1 The Modified Ostrovskii/Sutin Method

The Ostrovskii/Sutin method is based on the assumption that the propagation of

the acoustic wave can be decomposed into two regions [Ostrovskii and Sutin, 1975;

Sutin, 1978; Naugolnykh and Ostrovsky, 1998]. The regions are illustrated in Figure 2.1.
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Figure 2.1: Diagram illustrating different regions of propagation used in the
Ostrovskii/Sutin Method.



10

Away from the focus, the wave is treated as a converging nonlinear wave, and

diffraction effects are ignored.  Near the focus, where diffraction effects “dominate,”

nonlinear propagation is neglected. The boundary between the two regions of propagation

is taken to be an abrupt transition occurring at some distance Ro from the focus

[Naugolnykh and Ostrovsky, 1998]. Possible quantitative values of Ro will be discussed

later in Section 2.2.  The method also assumes that the medium in which the waves

propagate is lossless.

In order to develop the Ostrovskii/Sutin method, let us assume that a spherically

symmetric pressure wave has been generated at the surface of the circularly focused

transducer which, when written in spherical coordinates, has the form

( ) ( )tptFrp o ωφθ sin,,, ==                                          (2.1)

where F is the focal length of the lens, po is the initial source amplitude, and ω  is the

frequency of the source.  The spherically symmetric assumption is only a rough

approximation since, as was explained in Chapter 1, the transmission coefficient of the

acoustic lens would always cause the amplitude of the pressure wave to taper off as the

angular distance from the axis, θ, increased.  However, for the purpose of this analysis,

this tapering will be neglected as it was in the analysis done by Ostrovskii and Sutin who

also assumed a spherically symmetric waveform at the surface of the transducer

[Ostrovskii and Sutin, 1975; Sutin, 1978; Naugolnykh and Ostrovsky, 1998].

Neglecting diffraction effects in the first region, the pressure wave at the source

would propagate according to the spherical Burger’s equation given by [Hamilton and

Blackstock, 1998]
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In this equation, c is the speed of sound, ρ  is the density, and β  is the traditional

coefficient of nonlinearity for the medium (i.e., 
A

B
2

1 + ).  The viscosity term was not

included in Equation (2.2) since we are assuming that the medium is lossless.  Equation

(2.2) when coupled with drive term given in Equation (2.1) yields a solution of the form
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[Hamilton and Blackstock, 1998; Sutin, 1978; Ostrovskii and Sutin, 1975; Naugolnykh

and Ostrovsky, 1998]
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provided that no shock fronts form in the converging wave.  A brief analysis of shock

waves is provided in Chapter 3.  Equation (2.3) will be used to describe the wave

propagation in the nonlinear “diffraction free” region.  Under these conditions, the

pressure wave at the edge of the first propagation region will satisfy Equation (2.3)

with oRr = .  Also, the wave will remain spherically symmetric across the aperture angle

α  of the source because diffraction effects are ignored.  The diffraction of this wave as it

propagates in the diffracting “linear” region to the focus will be analyzed next.

When the wave enters the diffracting “linear” region of propagation, it must

satisfy the linear wave equation.  One result that can be derived from the linear wave

equation is Poisson’s theorem [Pierce, 1991].  Poisson’s theorem was given in Chapter 1

and proved in Appendix A.  Poisson’s theorem, when applied to this problem, states that

the pressure at the focus can be determined from the spherical mean of the pressure on a

spherical surface enclosing the diffracting “linear” region of propagation.  Expressed

mathematically, this means that the pressure at the focus is given by,
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where Ro is the radius of the spherical region, and )t,R,(p o0  is the spherical mean of the

pressure over the spherical boundary given by
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However, since the wave is spherically symmetric at oRr = , )t,R,(p o0  simplifies to the

value of p(Ro,t) given by Equation (2.3) multiplied by the ratio of the surface area of the

sector covered by α  to the total surface area of the sphere.
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It should be mentioned that Ostrovskii and Sutin approximated the surface area of the

sector covered by α  to be ( )2
oRαπ  in their work, yielding a slightly different expression

for their final results [Ostrovskii and Sutin, 1975; Naugolnykh and Ostrovsky, 1998].

Now that we have derived an expression for )t,R,(p o0 , we can evaluate

Equation (2.4) to propagate the wave through the “diffracting” region to find the pressure

waveform at the focus.  In order to do this, we need to obtain expressions for the

derivatives of )t,R,(pR oo 0⋅  with respect to Ro and t.  Taking the derivative with respect

to Ro yields,
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Likewise, the derivative with respect to time can be found as,
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These expressions can now be substituted into Poisson’s theorem to find the pressure

waveform at the focus.
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Notice that Equation (2.11) varies with respect to cos(ξ).  Furthermore, since the

peak compressional pc and rarefractional pr pressures correspond to cos(ξ) values of ±1

respectively, expressions for each of these values can be found.
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From these expressions, it is evident that the peak compressional pressure will be larger

than the peak rarefractional pressure.  Also, the peak compressional pressure should be

larger than that expected by linear propagation (σs= 0), and the peak rarefractional

pressure should be smaller than expected.  As a reminder, these expressions are only

valid for σs values less than 1 since Equation (2.3) is only valid prior to shock formation

[Hamilton and Blackstock, 1998].

2.2 Some Inherent Problems with the Ostrovskii/Sutin Method

At this point we need to discuss some flaws in Ostrovskii/Sutin’s approach to the

problem.  First of all, the analysis assumes that the spherical Burger’s equation is valid in

the diffraction free region.  This would require that the wave be initially spherically

symmetric across the transducer aperture, and that geometric or ray acoustics applied so

that diffraction could be neglected.  In order for ray acoustics to be valid, amplitude

variations must be small over distances of many wavelengths [Naugolnykh and
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Ostrovsky, 1998; Pierce, 1991].  However, these assumptions are mutually exclusive

because if the wave is initially spherically symmetric, then there must be jump

discontinuities at the boundaries of the transducer.  These jump discontinuities violate the

principles of ray acoustics.

Another problem with the analysis is that it assumes nonlinear effects can be

neglected in the focal region.  However, this is also the region where pressure amplitudes

are the largest.  Although diffraction effects may be more prominent near the focus, the

nonlinear effects are still present.  Bacon also committed on this limitation by saying that

Ostrovskii/Sutin’s method only produced meaningful results when the focal gain of the

transducer was greater than 6π [Bacon, 1984].  In effect, this would set an upper limit on

the size of the linear diffracting region reducing the contribution of nonlinear effects in

focal region. Remember, the wave must propagate a finite difference before nonlinear

effects can accumulate [Hamilton and Blackstock, 1998].  Bacon’s limit, however, is only

a partial solution.  This is particularly evident when we let σs go to 1.  In this case, the

compressional pressure would go to infinity regardless of the size of the focal region.

This blow-up clearly does not correspond to a physical solution.

The last problem with this analysis that will be addressed in this section is that the

radial boundary between the nonlinear and linear regions, Ro, is difficult to define

quantitatively.  This means that there is some uncertainty in the final results since σs has a

logarithmic dependence on this value.  In their original work, Ostrovskii and Sutin stated

that Ro should be larger than

( )α
λ

cos1 −
=fr                                                    (2.13)

They then set a limit on the gain of the transducer to insure that variations of Ro near rf

would not substantially affect the final quantitative results [Ostrovskii and Sutin, 1975].

As an aside, the limit on the gain they set is only stated, not proved, and it is not clear

where their result comes from.  From my own analysis, I would argue that their

expressions are questionable at best.  Based on their analysis, a good choice would be to

set fo rR = .

Another possible value for Ro can be found in a later work by Naugolnykh and

Ostrovsky [1998].  In this work, the value of Ro is selected by determining
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mathematically when the diffraction and nonlinear effects should contribute equally to

wave propagation.  These effects can be compared by performing a simple analysis on

the well-known Khokhlov-Zabolotskaya-Kuznetsov (KZK) equation given by [Hamilton

and Blackstock, 1998]
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where z is the along which the beam propagates, τ is the slow scale transformation given

by 
c
zt −=τ , and 2

⊥∇  is the Laplacian operator applied in the x-y plane that governs

diffraction of the beam.  As an aside, the KZK expression provided by Ostrovskii and

Naugolnykh in their work has a minus sign mistakenly included.  However, later in their

derivation this error has been removed [Naugolnykh and Ostrovsky, 1998].

In order to compare diffraction and nonlinearity, Equation (2.14) must be written

in terms of dimensionless variables that would highlight their relative effects on the

overall equation.  In order to do this, define [Naugolnykh and Ostrovsky, 1998]
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where a is the current radius of the beam, and pm is the current pressure amplitude.

Substituting these values into Equation (2.14) yields the dimensionless form of the

equation given by
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In this equation, N is given by 
D

N

L
L

N =  where LN is the shock formation distance of a

plane wave with the same amplitude propagating in the medium, and LD is the

characteristic diffraction length given by 
2

2ka
LD =  where k is the wavenumber.  Notice

that if N is small, diffraction effects can be neglected [Naugolnykh and Ostrovsky, 1998].

In the analysis given by Ostrovskii and Naugolnykh, they also state that if N is large,

nonlinear effects can be neglected for a first approximation, and then later included by

adding a small perturbation at the second harmonic frequency found from further
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analytical analysis [Naugolnykh and Ostrovsky, 1998].  Ironically, there is no attempt to

make such a correction in their derivation of Equation (2.12) [Naugolnykh and Ostrovsky,

1998].

Returning now to our initial goal of finding an appropriate value of Ro, Ostrovskii

and Naugolnykh set Ro to be the value at which N = 1 [Naugolnykh and Ostrovsky, 1998].

This value can be found by considering how N will vary as the waves approach the focus.

LN is proportional to r, the distance from the origin as expressed in Equation (2.3), due to

the convergence of the waves, and LD is proportional to r2 since the radius of the beam is

proportional to r.  Substituting these values into the expression for N gives
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where A is the radius of the source.  Ostrovskii and Naugolnykh give an identical

expression in a slightly different form in their analysis in [Naugolnykh and Ostrovsky,

1998].

Before Equation (2.17) can be used to find a value for Ro, the value of the

pressure at the source po needs to be determined.  However, it normally is not practical to

measure this pressure. One possibility is to determine po in terms of the total peak-peak

pressure at the focus, pp-p.  Adding the equations in (2.12) and then solving for po in terms

of the total peak-peak pressure yields
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The value for Ro can then be expressed as
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where ( )21 sσ−  term has been removed since σs should be appreciably smaller than 1 in

order for (2.18) to be valid (i.e., ignore nonlinear effects in the focal region).
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 Equation (2.19) is clearly a more complicated formulation for selecting a Ro.

Unfortunately, it is neither robust nor unique.  For example, another valid choice for Ro

could be found by choosing an N=1.5 and solving again for Ro as was done in (2.17).

Therefore, the quantitative value of Ro could vary by some multiplicative constant on the

order of 1, namely, the choice of N(Ro), without changing the physical arguments of the

derivation.  Also, the formulation lacks robustness in that the total peak-peak pressure at

the focus must be fairly large before Ro is small enough to approximate the size of the

focal region.  For example, if Equation (2.19) were to be applied to the experiment

performed in the next section of the paper, the calculated value of Ro would be greater

than the focal length of the transducer.

The final method to define Ro to be discussed in this paper is based on an analysis

of the amplification or gain factor of a focusing acoustical source done by Naugolnykh

and Romanenko [1959] and reviewed by Duck in [1999].  In their formulation, they

defined a radial distance from the focus at which the amplitude of the acoustical signal

found by ray acoustics is the same as the amplitude at the focus with diffraction effects

included [Duck, 1999].  The value of this radial distance is given by [Duck, 1999]

( )απ
λ

2sin
=′fr                                                    (2.20)

Although, Ostrovskii and Sutin did not consider this radius as a possible choice for Ro in

their published work, this value seems to capture the desired properties of their method.

Namely, this is the radius at which geometric acoustics breaks down and diffraction

effects must be included for the case of linear wave propagation.  Logically, the same

should be true for nonlinear wave propagation.

2.3 Insights Provided by the Ostrovskii/Sutin Method

Despite the problems inherent in the Ostrovskii/Sutin method, it can still provide

valuable insight into nonlinear wave propagation for a focused ultrasound transducer.

First, recall that the peak compressional pressure will be larger than the peak

rarefractional pressure due to the σs in the denominator of the equations in (2.12). The σs

is placed in the denominator by taking derivatives of )t,R,(pR oo 0⋅  (i.e., diffraction)

while )t,R,(p o0  has a p dependence due to nonlinearity.  Therefore, from these
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expressions it is clear that both diffraction and nonlinearity must be acting on a wave in

order to produce asymmetric distortion.

The Ostrovskii/Sutin method also provides insight into how asymmetric distortion

should develop.  Recall that in the analysis, asymmetric distortion resulted from the

diffraction of the nonlinear wave.  Therefore, the field along the beam axis prior to the

focus should have very little asymmetric distortion since diffraction effects are minimal

in this region.  Likewise, the asymmetric distortion should not “change” after the focal

region since diffraction effects would be minimal once again. Experiments were

performed in order to determine if the asymmetric distortion did vary in this manner

along the beam axis.

In the experiments, a 3 MHz spherically focused transducer (Matec Instruments,

Inc., Hopkinton, MA) with a diameter and focal length of 5.08 cm (f/# = 1) was placed

opposite a PVDF membrane hydrophone (Marconi, Ltd. Essex, England) in a tank of

degassed water at a water temperature of 20.1 oC.  The hydrophone was then scanned  in

80 µ m steps along the beam axis across the focal region as described in [Sempsrott, 2000]

for different transducer drive conditions.  At each step, the pressure waveform was

recorded [Sempsrott, 2000].  From the waveforms, the asymmetric ratio (pc/pr) and the

total peak-peak pressure could be determined for each position along the scan.  The data

was then smoothed by using a sixth order polynomial to fit the data [Sempsrott, 2000].

Some results that nicely illustrate the development of asymmetric distortion near

the focal region are shown in Figure 2.2. These results were obtained by exciting the

transducer by “three cycle” voltage pulses with a center frequency of 3.09 MHz at two

different amplitudes.  The notation “three cycle” will be explained in Chapter 6.  The

lower and higher amplitude pulses are shown as solid and dashed lines, respectively.  For

these plots, the axial location of the maximum peak-peak pressure does not correspond to

the focus because the focal length of the transducer was defined to be the location of the

maximum pulse intensity integral (PII) [Sempsrott, 2000].   Later in the thesis, the focus

will be defined as the location of the maximum peak-peak pressure.

Notice that in these experimental results, the amount of asymmetric distortion

decreases steadily as we approach the source.  Also, the asymmetric ratio of both the high

and low drive conditions seem to be converging quickly to the same value while the total
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peak-peak pressure maintains roughly the same separation.  This shows that asymmetry is

minimal prior to the focal region.

Figure 2.2: Results demonstrating pulse asymmetry near the focal region.

Likewise, the asymmetric ratio seems to saturate at some maximum value after

the focus of the transducer. Once the pulse leaves the diffracting region near the focus,

asymmetric distortion no longer changes the pulse shape. Therefore, there is good

qualitative agreement between our experimental results and the theory predicted by the

Ostrovskii/Sutin method.  As a caution to those wishing to repeat these measurements, it

was observed that if the scan was performed along a line slightly off from the beam axis,

then the asymmetric ratio decreased after the pulse left the focal region.

The experimental results that are shown in Figure (2.2) can also provide insight

into the different definitions of Ro that were provided in the previous section of this

chapter.  For this case, we cannot use Equation (2.19) since the resulting value for Ro

would be greater than the focal length of the transducer for these power settings.  Setting

fo rR = or as given by Equation (2.13) will give a boundary radius of 3.58 mm.

Likewise, using fo rR ′= as given by Equation (2.20) gives a boundary radius of 0.61 mm.

Based on when asymmetric distortion no longer changes the pulse shape, one would

expect a Ro value on the order of 1.5 mm.  Therefore, Equations (2.13) and (2.20) seem to
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overpredict and underpredict the value of Ro, respectively. However, a single experiment

is not sufficient to completely characterize the values of the boundary radius.


