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CHAPTER 1

INTRODUCTION TO THE NONLINEAR INDEX
PROBLEM

Over the past few decades, the propagation of acoustic signals through the human

body has found application in medical imaging as well as the treatment of various

ailments.  Also, many new applications are being continually developed.  As the demand

for medical ultrasonic devices increases, so does the demand for reliable methods of

characterizing the pressure output of the ultrasound transducers.  Currently, every focal

region is characterized at every transducer voltage setting by directly measuring the

acoustic pressure in a water bath.  This process is highly time consuming, ultimately

increasing the cost and development time for each transducer.

In order to reduce this measurement time, there is a desire to linearly extrapolate

the focal pressures from the applied voltage settings.  Ideally, the manufacturer would

measure the pressure for one voltage setting and then extrapolate to find the pressure for

all other voltage settings.  Unfortunately, sound propagation is a nonlinear phenomenon

restricting the range of inputs over which linear extrapolation can be performed.  The

goal of this thesis was to determine if a reliable nonlinear indicator could be determined

to measure the amount of nonlinearity in the acoustic waveform at the focus.  The

diagnostic ultrasound equipment manufacturer would then know over which applied

voltages linear extrapolation would be valid.

1.1 Background: Extrapolation in Ideal Linear Case

Before addressing the nonlinear problems associated with linear extrapolation, it

is important to understand how the extrapolation would work in the ideal case.  This will

be done by briefly explaining how an applied voltage to the transducer relates to the

resulting pressure at the focus of an ideal circularly focused transducer assuming ideal
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linear propagation.  Therefore it is necessary to explain the pressure versus voltage

characteristics of a piezoelectric transducer as well as the propagation characteristics of a

focused source.  Our analysis will be restricted to a focused spherical transducer, but the

same ideas also hold for the arrays commonly encountered in medical imaging

applications.

The pressure versus voltage characteristics of any piezoelectric transducer can be

understood based on the circuit model developed by Krimholtz, Leedom, and Matthaei in

1970 known as the KLM model [Krimholtz et al., 1970].  A diagram illustrating this

model is shown in Figure 1.1.
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Figure 1.1: The KLM model of a piezoelectric transducer.

In this model, V3 and I3 are the respective voltage and current applied to the piezoelectric

crystal which produce the resulting acoustic forces, F, and particle velocities, U, at the

respective faces of the crystal.  The model parameters include the thickness of the crystal,

d, the area of the crystal, A, and the characteristic impedance of the acoustic transmission

line (i.e. the radiation impedance) modeling the piezoelectric crystal, Zo. A detailed

discussion of acoustical impedances can be found in [Kinsler et al., 2000].  In order to

complete the model, it is also necessary to include a capacitor, Co, an impedance, jX1, and

a transformer with the ratio (1:φ) that converts the electrical signal into the appropriate

acoustical values.  Co results from the resonator consisting of a dielectric, the

piezoelectric crystal, between two excited conducting surfaces.  The values for these

parameters as given by Krimholtz et al. [1970] are
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where ε is the permittivity of the piezoelectric under no applied voltage, h is the

piezoelectric pressure constant for the crystal, ρ is the density, and c is the speed of

longitudinal sound waves in the crystal.

Now that the model is in place, we can proceed with the analysis of the pressure

versus voltage characteristics of the typical transducer.  Let some voltage waveform be

applied to the terminal V3.  Each frequency component in the waveform will “see” a

different impedance set by the values of Co, X1, and the impedance “seen” looking into

the acoustic transmission line reflected across the transformer.  The effective impedance

of the acoustical transmission line will depend on the acoustical impedance of the

material into which the piezoelectric radiates as well as the frequency.   Based on these

impedances, a current I3 will be set up in the transformer.  This current will scale linearly

with the applied voltage provided that the frequency spectrum also scales linearly as the

voltage is changed.

The current I3 will then be translated to the other side of the transformer, where it

will establish the appropriate particle velocities in the acoustic transmission line.  The

particle velocity waveforms generated at each surface of the crystal can then be

determined by summing the currents at the central node and applying basic transmission

line theory; both of which are linear operations.  The pressure wave can be determined

from the velocity wave by simply multiplying by the radiation impedance at the surface

of the piezoelectric crystal [Kinsler et al., 2000].  More details on this calculation are

provided in Appendix B.  Obviously, the resultant acoustical signal will scale linearly

with the applied voltage provided that the frequency spectrum of the applied voltage

waveform scales linearly with the voltage amplitude.

At this point, it is clear how an applied voltage will linearly translate to an

acoustic waveform at the surfaces of the piezoelectric crystal.  We can now proceed with
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the analysis in terms of acoustical signals to see how these waveforms relate to the

pressure at the focus of the transducer under ideal linear propagation. The basic layout for

a focused transducer is shown in Figure 1.2.

Figure 1.2: Diagram of a typical focused transducer.

The pressure wave propagating out of the piezoelectric crystal and into the

acoustic lens is directly related to the applied voltage waveform as was discussed above

using the KLM model.  The generated acoustic signal will propagate through the acoustic

lens until it reaches the lens water interface.  At this interface, the incident particle

velocity will generate a reflected wave, which will not be analyzed in our discussion, and

a transmitted wave.  Both waves will be directly proportional to the wave leaving the

piezoelectric crystal with the constants of proportionality being the reflection and the

transmission coefficients corresponding to the lens water interface.  These coefficients

would vary across the surface of the acoustic lens since the incident angle θ of the plane

wave with respect to the surface normal would be different for each point along the

surface.  This would result in a decrease in the wave amplitude as the angular distance

from the lens center increased.   However, for each point on the lens, the idea of

proportionality still holds.

After leaving the lens, the transmitted wave will be a converging wave, which

will focus at a distance, F, given by [Kinsler, 2000; Hecht, 1998]
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In this equation, cwater and clens are the corresponding longitudinal wave speeds of the

sound in the water and in the lens material, and ROC is the radius of curvature for the

lens.  However, the speed of sound in the lens is typically much greater than that for

water, so the above expression if often approximated as

ROCF ≅                                                          (1.3)

This expression will be used in the remainder of the analysis.

Using the approximation in Equation (1.3) the waveform at the focus can be

calculated from the transmitted waveform from Poisson’s theorem [Pierce, 1991].    A

complete statement of the theorem is provided and proved in Appendix A.  The theorem

states that the pressure at the center of a spherical region can be determined from the

pressure waveform at all points on the boundary of the region using

cRtt
ooo

o

)t,R,x(pR
tcR

)t,x(p
−=





 ⋅







∂
∂+

∂
∂= rr 1

                            (1.4)
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where n
r is the outward unit normal vector of the surface of the spherical region.

Equations (1.4) and (1.5) can be used directly to find the pressure waveform at the focus

of the transducer by setting R = ROC.  Notice that linear changes in the pressure at the

surface of the transducer, )t,ROCnx(p o
rr + , translate to linear changes in the spherical

mean of the pressure, )t,ROC,x(p o
r

.  Furthermore, linear changes in )t,ROC,x(p o
r

result in linear changes in the pressure at the focus, )t,x(p oo
r

, since Equation (1.4) is a

linear partial differential equation (PDE).

From this analysis, it is clear that the pressure at the focus of a focused transducer

should scale linearly with the applied voltage in the ideal case. Hence, linear

extrapolation to determine pressure values at the focus would also work.  Unfortunately,

the real world is not ideal, and nonlinearities soon distort the simple linear relationship

described above.  A brief analysis of these nonlinearities is provided in the next section.
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1.2 Motivation: Problems Introduced by Acoustical Nonlinear Effects

As was discussed in Section 1.1, it should be possible to predict the acoustic fields

at the focus of a focused transducer from values at other voltage settings in the ideal

linear case.  One possible nonlinear mechanism, source nonlinearities, was also

mentioned.  Obviously, if the spectrum of the applied voltage pulse changes with voltage

amplitude, the resulting pressure at the focus will also not scale with applied voltage.

However, the propagation of the acoustic signal will also introduce nonlinearities, even

when a perfect linear voltage source is used in the experiment.  In this section, the

problems introduced by these acoustical nonlinearities will be briefly explained.  The

acoustical nonlinearities served as a motivation for this thesis since the goal was to find a

reliable indicator for when they could be neglected and linear extrapolation could be

performed.

One nonlinear effect that limits our ability to perform voltage-based linear

extrapolation is asymmetric distortion. When diffraction and nonlinearity both act on an

acoustic wave, the peak compressional pressure is always larger than the peak

rarefractional pressure as shown in Figure 1.3.

Figure 1.3: Plot illustrating asymmetric distortion for a focused source.

This type of pulse asymmetry is known as asymmetric distortion.  A complete

discussion of this effect is provided in Chapter 2. For now, however, it is sufficient to
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know that the peak compressional pressures will be larger and the peak rarefractional

pressures will be smaller than those predicted by linear extrapolation.

Another nonlinear effect that corrupts linear extrapolation is nonlinear absorption,

which will be discussed in greater detail in Chapter 3.  Nonlinear absorption is commonly

analyzed in terms of acoustical saturation. Saturation is the process by which the

amplitude of a propagating acoustic wave becomes independent of its initial amplitude at

the source due to the nonlinear generation and absorption of harmonics [Hamilton and

Blackstock, 1998].  In general, nonlinear absorption will lower the peak compressional

pressures, the peak rarefractional pressures, and the total peak-peak pressures from those

predicted by linear extrapolation.  Notice that nonlinear absorption and asymmetric pulse

distortion are competing effects whose relative influence can currently only be assessed

experimentally.

1.3 Approach and Summary of Results

In order to determine when acoustical nonlinearities could be neglected for the

purpose of linear extrapolation, many different indicators of nonlinearity have been

proposed.  The goal of this work was to assess the proposed indices to determine if one of

them could then be used as a guide for the linear extrapolation.  To this end, the

theoretical basis for each of the indices was investigated.  However, all the of indices

were found to be based on approximations of the complete nonlinear acoustic equations.

Unfortunately, this is unavoidable due to the complexity of the nonlinear partial

differential equations involved.  Therefore, the different indices could only be assessed

experimentally.

Before the indices could be assessed, however, a reliable extrapolation factor

needed to be found.  This was done by performing a series of experiments with a

hydrophone placed very close to a series of transducers.  Several different extrapolation

factors were then compared in terms of their ability to perform linear extrapolation for

these experiments.  Errors in these measurements could also be used as a confidence

measure for the evaluation of the nonlinear indices.

After finding a viable extrapolation factor, a series of experiments were

performed where the hydrophone was placed at the focus of a transducer.  Threshold
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values for the different indicators corresponding to the maximum allowable amount of

nonlinearity in the waveform were then found for each transducer and drive condition.

These threshold values were then evaluated in terms of their consistency between

transducers and drive conditions as well as their behavior within each data set.

The results of our investigation showed that none of the proposed indices would

be able to govern linear extrapolation for all pressure measures of the focal waveform.

This occurred because they are based on theories that either ignore nonlinear absorption

or ignore asymmetric distortion.  There is no theory that attempts to capture both effects.

Therefore, there is a definite potential for future development in this area.  Furthermore,

if a more complete theory were to be developed, it might also be able to generate a usable

indicator of nonlinearity to govern the extrapolation procedure.


