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CHAPTER 1

INTRODUCTION

The field of medical ultrasound encompasses a wide spectrum of clinical
applications that range from diagnosis to surgery. In diagnostic applications, the intent
is not to affect the tissues, whereas in therapy, the tissue may be heated or destroyed.
Thev amount of energy delivered to the tissue and the bioeffect induced are determined
by the application. At the high end of the energy scale is focused ultrasound surgery,
where destruction or necrosis of the target tissue is desired. The specific goal of this
study is to examine theoretically the feasibility of employing sparse random element
array configurations for focal surgery.

Focused ultrasound surgery falls into the category of minimally invasive
surgery. Potential applications of this technique have been explored in a number of
clinical fields, including ophthalmology [1], urology [2], and oncology [3], [4]. Such
surgical applications require precise control of the size and location of the focal therapy
beam, as well as consideration of the effects of the entrance and exit beams associated
with the use of focal fields. Early equipment was heavy and cumbersome, and imaging
techniques were inadequate to ensure accurate placement of lesions at the target site in
a living patient. Improvements in instrumentation have meant that these problems have
been largely overcome, and there is a resurgence of interest in the clinical applications
of this technique.

Ultrasonic focal surgery has clear advantages over conventional forms of

surgery. It can be used to target tissues underneath the skin surface without the



complications of conventional surgery. By focusing high power ultrasound beams at a
distance from the source, total necrosis of tissues lying within the focal volume may be
achieved without damage to any structures lying elsewhere in the path of the beam.
Nevertheless, there are some limitations in using ultrasound as a surgical tool. For
instance, because the sound must be focused, a large acoustic window at the skin
surface must be available to ablate tissue volumes at depth. Also, because of the
propagation properties of sound, it is essential that neither bone nor gas lies in the path
of the beam. It is important for the safe and effective use of focused ultrasound surgery
that the intensity at the skin surface be kept low enough that it will not cause a burn [5].

Surgical ultrasound beams have historically been produced by single element
transducers focused geometrically [6]. The acoustic beams produced by such devices
are fixed in shape, and in position, with respect to the face of the source transducer.
Changing the physical properties of the source transducer such as radius of curvature or
diameter is unavoidable if one has to modify the focal size of the beam. The scanning
of the focus in these cases can be accomplished only by using a precisely controlled,
rapidly translatable mechanical system.

Phased arrays offer an advantage over the single element transducer in that
electronic steering of a focal ultrasound beam is possible, which means that precise
target positions can be obtained without physically moving the transducer. In addition,
the nature of phased arrays provides a means for modifying the characteristics of the
ultrasonic surgical beam [7]. This electronic beam synthesis can be applied to steer the
beam to specific target locations, as well as to vary the focal volume produced by the

array, thus catering to specific clinical needs [8]. It has been shown that an array inter-



element spacing of a half wavelength can be employed to avoid the production of
grating lobes which can degrade system performance [9]. At megahertz frequencies,
this spacing requirement limits the array to small apertures for reasonable numbers of
array elements. However, a large aperture is generally necessary to develop sufficient
intensity gain for tissue ablation. This requires adding more array elements whose
individual size is inversely proportional to the driving frequency. The need to provide
separate RF drive and control for each additional element further complicates the
construction procedure for surgical ultrasound phased arrays.

The solution proposed in this thesis is to use a sparsely filled spherical
ultrasonic phased array to reduce the number of array elements and RF drive channels
required for practical implementation. Sparse, random arrays have long been used in
the design of communication antenna array systems [10]. For this particular
application, the design concept involves a spherical acoustic aperture, with the focus of
the aperture geometrically centered on the tumor when all elements of the array are
excited at a common phase. The position of the focal region is controlled by modifying
the phase of the signals applied to individual elements to ablate the entire tumor
volume using a succession of exposures at various sites within the tumor. Even though
the element spacing is greater than half the wavelength in a sparse array, the use of
spherical geometrSI and random location of elements will minimize grating lobes.

Goss et al. [11] have conducted studies of the spherical sparse array. They
constructed a spherical segment array with 108 elements arranged in a hexagonal
pattern as an experimental protocol.. However, only 64 elements, randomly chosen,

were excited at one time. The spherical shell had a diameter and a radius of curvature



that were both 10 cm. For the theoretical analyses of the hexagonal array, and for all
simulations in this thesis, each individual transducer was driven with a surface velocity
of 0.1 m/s , which corresponds to an output intensity of 0.77 W/cm®. Both the
simulation and experimental results showed that six grating lobes with significant
amplitude with respect to the focus were produced. Electronic steering of focus will
cause the focal intensity to decrease while the trailing grating lobes increased to
unacceptably large amplitudes.

This thesis provides an in-depth study of ways to improve the performance of
the hexagonal phased array system proposed by Goss et al. [11]. The details of the
computational model used to generate the theoretical results are outlined in Chapter 2.
Chapter 3, 4, and 5 contain details of the various attempts to improve system
performance. In Chapter 3, randomization processes are investigated in an effort to
minimize the grating lobe level. Chapter 4 investigates the relationship between the
input and output parameters of this Multi-Input-Multi-Output (MIMO) array system to
produce a mathematical model, which can be utilized for system performance
evaluation. Chapter 5 examines the possibility of optimizing the array by modifying
the transducer characteristics. The goal of this work is to design a phased array system

with desired focal intensity and steering width.



CHAPTER 2

COMPUTATIONAL MODEL DESCRIPTION AND OPTIMIZATION

This chapter will begin with a short discussion of the theoretical basis of the
random sparse array. Details of the derivation, upon which the computational model
is based, have been provided by Barich [12]. The only section of derivation that will
be included in this thesis contains a correction to the original work. Then, a brief
outline of the simulation will be provided to explain the operation of the Random
Sparse Array Simulator (RSAS) used to compute the acoustic field produced by the
array. The algorithms that were improved to optimize the performance of the

simulator will also be presented in this chapter.

2.1 Theoretical Basis of the Computational Model

The Random Sparse Array (RSA) is one form of an aperiodic array. Since a
regular pattern of spacing does not exist, the large grating lobes associated with a
periodic array are not present. The spacing between the elements, and the elements
themselves, are larger than half a wavelength. This reduces the number of elements
that are placed on the transducer aperture. As a result, the RSA can be built more
economically than the conventional fully sampled phased array.

The field produced by a random array in general can be determined as
discussed below. The behavior of the random array can be investigated using the
mathematics of random processes. Since the array can be described statistically, onel

can derive its properties in a probabilistic manner. This can then lead to specifying



the statistical averages of the important properties of the radiation patterns such as
average grating lobe level. However, the statistical study of the random array is
beyond the scope of this thesis and will not be discussed here.

The Random Sparse Array in this study consists of circular piston sources
(elements) mounted on a spherical shell. Thus, with no phasing of signals applied to
the sources, the focus is located at the geometric focus, but the focal region can be
electronically steered to ablate an entire treatment volume by varying the phases of
signals applied to each individual element. The directivity pattern of the elements
will determine the steering range of the array. The relation between the two is given
in a later chapter. The pressure field of the entire array is calculated by superposition
of individual piston source field patterns, which are calculated using the Point
Radiator Method. The theoretical development for the pressure field of a piston
source was provided by Barich [12]. However, the equations used by Barich to
obtain the field pattern of the individual element contained an error. The pertinent
portion of the derivation with the correction is shown below. The derivation is based

on the schematic in Figure 2.1.
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Figure 2.1 Schematic of the Point Radiator Method.




The pressure P, produced at the point (Ro, Z, ) by a point source positioned at
(Xo,Y,) is

.p,ckU AA exp—(a + jk)R
p =P 3 P(RJ)

2.1.1
o o (2.1.1)

surface

where p, is the density of the propagating medium, c is the speed of sound in the
medium, U, is the surface velocity, AA is the incremental area of the source, k is the
wave number, R is the distance between the points (X,, Y,) and (Ro, Z,), and o is the
attenuation constant of the propagating medium. In this part of the code, in which
the pressure field of a single piston source 1s calcﬁlated, the attenuation constant o is

set to zero. The effect of attenuation is included when calculating the field of the

. . 2nf :
entire array. With o = 0, and k = —, the pressure equation becomes
c

P, = jp fU,AA Y xp—(kR) 2.1.2)
surface R
From Euler’s formula where exp(j0)= cos0 + jsin6,
P =p,fUAA DY %[Sin(kR)+ jeos(kR)] (2.1.3)

surface

The above equation from Barich has been corrected where a j was missing from
Equation (2.1.2). However, even though the Barich result was off in phase by 90
degrees, this did not affect the results of the simulation because the relative phases

between the elements was the same.



2.2

The flowchart in Figure 2.2 summarizes the main operations of the RSAS,

which is used to calculate the acoustic field of the random sparse array. The actual

simulation code is listed in Appendix A.
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and phase of the pressure versus r and z. This table is an input to the RSAS
algorithm. Next, the RSAS reads in the control file, which contains information such
as the focal coordinates, output file name, name of the state file, and name of the
coordinate file. The coordinate file contains the location of the source elements
while the state file indicates those elements that are turned on during the simulation.
The simulator then uses the data from the input files to calculate the phase of each of
the elements required to generate a focus at the desired location in the Source
Phasing subroutine. The phasing information is then passed onto the subsequent
subroutine called the Intensity Calculation Module. This is the heart of the
simulation for it calculates the pressure at various points in a pre-specified area or
volume through superposition of the appropriate pressure values from the RZ-Grid
with proper phase adjustment. The output file from this module contains the
intensity distribution profile, which can be plotted or analyzed through data
manipulation programs such as Matlab. The detailed operation of the two main
modules, the RZ-grid Generation Module and Intensity Calculation Module, is

described extensively by Barich [12] and will not be discussed here.

2.3  Improvement to Previously Developed Modules

To improve the performance of the simulator so that the result gives a correct
representation of the actual array system and so that the process of analyzing the data
can be accomplished with ease, several modifications were made to the simulation

written by Barich and are discussed in this section.



2.3.1 Output file format of RSAS.

To better visualize the pressure field produced by the random sparse array, the
output scheme of the RSAS was revised. In the original simulator, the code had the
ability to output only one-dimensional (1D) plots. Specifically, the RSAS could
output only files that contained information pertaining to only one of the axes (see
Figure 2.3(a)). This was not the most ideal format because researchers were not able
to identify all of the grating lobes and their positions. Thus, an algorithm was
developed to allow the simulator to output the intensity profile in matrix form which
could then be plotted using Matlab. An example of the resulting plot, showing the
intensity profile in two dimensions (2D), is shown in Figure 2.3(b)). The grating
lobes that were unobservable in the 1D output format can be seen with clarity in the

2D plot.

intensity (W/cm?)
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Figure 2.3  The 1D and 2D plots of the intensity profile at the focal plane
of the RSA is show in (a) and (b), respectively.
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2.3.2 Phase quantization

In the original code written by Barich [12], the phase of the signal applied to
each element was assumed to be exact. However, this is not true for the actual
hardware employed in the experimental system. The transducer driver built by
Labthermics Technologies utilizes a 16-level phase quantization scheme in which the
phase is stepped at an interval of 22.5 °. This scheme was incorporated into the
RSAS code to better simulate the experimental conditions. The incorporation of the
quantization did not affect the result noticeably. Figures 2.4(a) and 2.4(b) show the
intensity profile through the focus along the y direction for the hexagonal array prior
to and after the implementation of the phase quantization scheme, respectively. The
intensity and position of the grating lobes are the same for each plot, and no other

obvious differences were observed. Thus, the effect of quantization appears to be

negligible.
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Figure 2.4  The 1D intensity profile plots for the hexagonal array. The profile
before and after quantization is show in (a) and (b), respectively.
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2.3.3 Optimizing simulation time

In the original simulation developed by Barich [12], many output modules
were installed to monitor the operation of the RSAS and to ensure the proper
operation of the code. However, these diagnostic functions are the most time-
consuming processes in the simulation. The code is at a stage now that the basic
functions have been checked several times for faults. Thus, many of these modules
have been eliminated to shorten the simulation time. In addition, since the output of
the RZ-Grid Generator module is in ASCII form, a converter program was written to
transform the output file format from ASCII to binary (see Appendix B). This
alteration speeded up the read-in time from six minutes to 1.5 minutes. To better
monitor simulation time, a time module was installed in the RSAS to indicate the
total elapsed time of the program. Currently, the total simulation time for the RSAS
is about 10 minutes for a 100 by 100 grid output.

The most CPU intense module currently is the RZ-Grid Generator Module.
To produce a 600 by 1000 reference grid for a circular piston source can take from 2
days to a week depending on the frequency and the radius of the element. Since we
are only interested in the intensity profile of the array near its geometric focus, this
module has been modified to reduce the region for field calculation resulting in only
a 150 by 100 reference grid. This change limits the longest running case to
approximately one day. An expanded grid can be generated if it is desired to

examine the field of the array over a larger area.
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2.3.4 Data extrapolation scheme

In the original RSAS written by Barich [12], the contribution to the pressure
at a point (rp,2,) from a particular element was the average of the pressures at the four
closest points in the RZ-Grid surrounding the point (rp,z,). However, this means that
any point falling within the region bordered by these points had the same value. To
better estimate the value of the pressure at a given point, a first-order data
extrapolation scheme has been devised. A graphical representation is shown in

Figure 2.5 to facilitate the understanding of this scheme.

Line 3

Line 2 Line 1

A
Pressure

A

z
Figure 2.5  Conceptual drawing of the data extrapolation scheme.

Since the reference values of pressure are given at the four corners of the
region as determined from the known coordinate positions in the R-Z Grid, one can
find the equation of lines labeled 1 and 2 in Figure 2.5. Then, by using the point on
each line which has the same z coordinates as the point where the field is desired,

the equation for line 3 can be obtained. This approximation to the pressure at (tpszp)



is given by the equation for line 3. A Matlab function for this extrapolation scheme
is included in Appendix D.1.

The result of this implementation is shown in Figure 2.6. Figure 2.6(a) shows
the envelope of steering with simple averaging as implemented by Barich [12]. Here,
the envelope of steering is defined as the change in intensity of the focus as it is
steered in the y direction from the geometrical focus. The effect of the new
extrapolation scheme is demonstrated in Figure 2.6(b). Note that the envelope in
Figure 2.6(b) is smooth as expected instead of having a sharp transition in the center

as seen in Figure 2.6(a).

intensity (W/cmz) intensity (Wiem?)
1500 - 1500
‘-\

1000+t 1 1000¢

500t // 1 500t

-10 0 10 -10 0 10
y-axis (mm) y-axis (mm)
(@ (b)

Figure 2.6  Plots of the steering envelope for the RSA. Plot (a) shows
the envelope before extrapolation scheme was implemented,
while plot (b) shows the result after the implementation.
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CHAPTER 3

EFFECT OF ELEMENT POSITION RANDOMIZATION

The result obtained for the hexagonal array studied by Goss et al. [11]
indicates that by merely turning regularly spaced elements on and off in a random
fashion still results in significant grating lobes. When the focus was steered, these
grating lobes could have intensities higher than the focus. This is unacceptable
clinically because unwanted tissue damage will occur due to the abnormally high
grating lobe level. This chapter examines other approaches to reduce the grating lobe

level of the sparse array.

3.1  Altering Position Utilizing a Damping Cap

The intensity profile of the hexagonal array in Figure 2.3(b) shows that a
regular pattern still exists even though elements were randomly activated. To
further increase the randomness of the system, one can apply absorbing damping
caps with circular openings smaller than the diameter of the element on the face of
the transducer element, where the positions of the circular openings in the caps are
placed in a random fashion. The consequence of adding the damping caps is that
the radii of the elements are reduced and their positions modified. To obtain
new coordinates of element positions, a Matlab subroutine was written (see

Appendix D.2), which could randomize the position of the cap opening through either

R or O (see Figure 3.1).
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Figure 3.1  Conceptual drawing of the cap with opening on the face of a
transducer element.

The center coordinates of the opening then were used in the RSAS as the
coordinates of the source elements with the reduced radius. The effect of this
modification is shown in Figure 3.2. The output intensity of the array was reduced
greatly due to its fourth-order dependence on the radius, as will be shown in Section
4.5. When R is randomized (see Figure 3.2(a)), the opening in the cap can still be
very close to the center of the element. Thus, the regular hexagonal pattern still
largely persists and the six grating lobes are still present. A better result was obtained
when 6 was randomized while R was maintained at half the element radius (see
Figure 3.2(b)). The next highest peak was 2 dB down instead of 1 dB down from the
peak at the focus as in the case where only R was randomized. Nevertheless, the six
grating lobes are still prominent in this case. The result obtained from the simulation
was a clear indication that another avenue had to be found to minimize the grating

lobes if this array system was to be used clinically.
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Figure 3.2 The intensity profile of the array with damping cap placed on
the face of the transducer element. Plot (a) shows the profile

with random radii, and plot (b) shows the profile with the
constant radii.

3.2 Random Element Position

To eliminate the grating lobes associated with the hexagonal array, it is
imperative to re-examine the design of the array. The only solution that will
eliminate the six grating lobes is to go to a “true” random array. To accomplish this,
the actual position of these elements was determined pseudo-randomly by the
computer. Since 108 elements in the hexagonal array were tightly packed onto the
spherical shell, the number of elements had to be reduced to allow random placement
of elements. Sixty-four elements were chosen for compatibility with the number of
channels in the experimental drive system. In addition, a constraint was made in the
computer algorithm to prevent overlapping of elements. The result of this
modification is shown in Figure 3.3(a), (b), and (c) where the focus was steered at 0,
2.5, 5 mm, respectively. The six grating lobes that were prominent in the hexagonal
array no longer existed. Elements randomly spaced on the array surface produced a

field that was free of the undesired grating lobes, and more energy was present at the
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focal point. Even when steered 5 mm from the geometric focus, the intensity of the

highest grating lobe compared to the focal intensity increased from

-14 dB to -8 dB. This is much better than for the hexagonal array where the relative

intensity of the grating lobe was about -9 dB without steering and +1.5 dB when the

focus was steered 5 mm.
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Figure 3.3

Above illustrations show the intensity in a transverse plane
through the focus for the random array when focus is located at
(a) the geometric focus (0,0,0), (b) 2.5 mm of the geometric
focus, and (c) 5 mm off the geometric focus.
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3.3  Effect of Different Random Element Coordinate Sets

The question that arises with the choice of many possible sets of random
element positions is whether there is a set that can produce the lowest grating lobe
level. Many other research groups have proposed complicated algorithms in an
attempt to find an answer to this question [13-15]. The optimization method used in
this study was much simpler than the methods used by other laboratories. First, many
sets of element positions were generated by the computer in a pseudo-random
fashion. Then, every one of these coordinate files was fed into the RSAS and
simulated for various focal locations. Specifically, eight positions, all of which were

5 mm from the geometric focus, were used (see Figure 3.4).

5 mm !
) O ) -
5.0 ©0) G0
O -C

Figure 3.4  Focal positions for the grating lobe study.

The number of grating lobes and the intensity of the highest grating lobe on
the focal plane withina 2 x 2 cm’ area around the geometric focus were recorded
using a computer algorithm. Note here that the number of grating lobes was defined
as the number of points which were at least 10 W/cm? above its nearest neighbor, and

the highest grating lobe level was the intensity level of the next highest peak from the

19



focus. The set of random coordinates that produced the lowest average number of

grating lobes was then used for all of the system parameter studies. Table 3.1 shows

the average number of grating lobes and average highest grating lobe level for five

sets of random coordinate files. Currently, element positions in set III are utilized in

the RSAS.

Table 3.1 Summary of the number of side lobes and side-lobe level for

various random coordinate files.

Random Coordinate Set AVG Number of Side Lobes AVG Side Lobe Level
I 51 -6.6
11 44 -6.5
11 40 -6.3
v 55 -6.9
Vv 45 -5.0
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CHAPTER 4

EFFECT OF DESIGN PARAMETERS

This chapter will analyze how the input and output parameters of the array
system are related to each other. Based on the information obtained from this
analysis, a mathematical model of the array was constructed which correlates the
input and the output parameters. Then, two optimization strategies are proposed

from the mathematical model to improve system performance.

4.1 System Overview
In order to improve the current design, a more in-depth look into the
relationship between the various input and output parameters is essential. Figure 4.1

shows a general structural diagram of the Multi Input-Multi Output (MIMO) array

system.

' FREQUENCY | |
T ->i INTENSITY

’f SPARSE —
S ——— RANDOM ARRAY
| RADIUS | SURGICAL

P> APPLICATOR

= STEERING WIDTH I

| NO. OF ELEMENTS-I-—

ATTENUATION

Figure 4.1  MIMO model of the random sparse array system.
The figure shows that by controlling the driving frequency, radius of the transducer, -

number of transducer elements, and attenuation along the path, the output parameters
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such as peak focal intensity and steering width can be modified. In the following
discussions, predictions will be made about how the inputs can affect the behavior of
the outputs based on theory. Then, the data from the simulation will be compared to

the theoretically derived results to verify the accuracy of our prediction.

4.2  Output vs. Tissue Thickness
In this section, the effect of tissue thickness (T) on intensity is investigated at
different frequencies and radii. Tissue thickness is defined as the distance from the

plane interface between the coupling medium and the tissue to the focal plane (see

Figure 4.2).
array aperture tissue
coupling .
medium T

attenuation path

Figure 4.2  Beam path from source to the point of focus.
As can be seen, by increasing the tissue thickness, one effectively increases the
portion of the path with attenuating tissue. The attenuation coefficient, o, is given as
a function of frequency, f, in MHz by

a =0.005(f)" (Np/mm) (4.2.1)

Consequently, one would anticipate that the peak focal intensity of the array would -

be inversely related to the tissue thickness. Figure 4.3 confirms this prediction.
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Both Figure 4.3(a) and 4.3(b) show that as we increase the tissue thickness, the

intensity decreases as a result.

Intensity (W/cm?) Intensity (W/cm?)
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O( 400+
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*a=2mm (a) *f=2MHz (b)

Figure 4.3 Effects of tissue thickness on acoustic intensity output.
Plot (a) shows the effect of varying frequency, while plot (b)
shows the effect of varying radius of the element.

4.3  Intensity Vs. Number of Elements

The resultant pressure field of the array is the sum of the contributions from
all the individual elements. Thus, one would expect the intensity of the array to
increase linearly as a function of number of elements. Simulations have been run to

verify the validity of this assumption. The results are shown in Figure 4.4.
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Figure 4.4  Effect of changing the number of elements in RSA. Plot (a)
shows the relationship between intensity and the number of
elements. Plot (b) shows the grating lobe level as number of
elements increase.

Figure 4.4(a) shows that the intensity of the array is a positive linear function
of the number of elements as predicted. Also, as the number of elements is
decreased, the intensity of the highest grating lobe compared to the focal intensity
increases drastically, as presented in Figure 4.4(b). Since the purpose of using the
sparse array configuration is to minimize the size of the grating lobes while using the
least number of elements, results of this study suggest that there is a lower limit as to

how “sparse” an array can be.

4.4  Intensity vs. Frequency

The formula below is the equation of pressure amplitude on axis for a single

piston source.

1 a U,n
P, ()= 5p.cU, ~ka= (P—in—)azf (4.4.1)
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Since I oc P2, one can see that the intensity is proportional to the square of the
frequency for a single piston element. By the fact that the composite pressure of the
array is just the superposition of pressure produced by each individual transducer, the
effect of frequency on intensity of a single piston source should be a relatively good
model for the array system. A simulation study has been conducted to record
intensities of the array with frequencies between 2 to 4 MHz at 0.5 MHz intervals, for
a lossless case (no tissue) and for a tissue thickness of 5 cm. The results are shown
in Figure 4.5 for three different transducer radii. The extrapolation lines fit to the

data points are calculated using a third-order polynomial.
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Figure 4.5 Intensity plots showing the effect of varying driving
frequency. Plot (a) presents the relationship without
attenuation, while plot (b) presents the relationship with
attenuation.

Where waves travel in a lossless medium, as shown in Figure 4.5(a), the
results indicate that the square law does apply for all three different radii. However,

for the 5 cm thickness of tissue, Figure 4.5(b) shows that the intensity decreases with
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frequency over most of the range examined since attenuation is strongly frequency
dependent. In fact, there is a maximum in intensity versus frequency indicating that

there is an optimal frequency at which maximum intensity can be realized.

4.5 Intensity vs. Radius of Element
From Equation (4.4.1), it is obvious that intensity is directly related to the
radius of the element to the fourth power. Simulation results are shown below for the

radius of elements ranging from 2 mm to 4 mm for the lossless case and for a tissue

thickness of 5 cm.
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Figure 4.6  Plots showing intensity at the focus versus radius of the element-
at different frequencies. Plot (a) presents the relationship
without attenuation, while plot (b) presents the relationship with
attenuation.

Where attenuation is negligible, as in Figure 4.6(a), the theory correctly
predicts the relationship between the peak focal intensity of the array and the radius

of the element. Figure 4.6(b) shows the effect of the attenuation for 5 cm thick tissue.
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The magnitude of intensity falls almost by an order of magnitude in comparison to

the case for a lossless medium.

4.6  Steering Width vs. Input Parameters

Next, the relationship between frequency and steering width was investigated.
The steering width here was defined as the distance between the half-power points on the
steering envelope. Theory suggests that the steering envelope of the array can be
described by the equation of the directivity pattern for the single piston source (see
Equation (4.6.1)).

2J1(kasin9)} “46.0)

H()= { kasin 0
where k is the wave number, a is the radius of the element, and 0 is the angular
departure from the beam axis. To verify this, the half-power width of the directivity
pattern for the single piston source and the steering width of the random sparse array
were calculated, and are presented in Figures 4.7(a) and 4.7(b), respectively. The

data from Figure 4.7 confirms the theoretical prediction because the plots look

exactly alike.

27



Single Piston Source Random Sparse Array

Half Power Width (mm) Steering Width (mm)
25 ; 25
20( 20( a=4 mm

15 B =3 mm\
109 ’ 1 0‘\
\% ) \?\Q\-O\N
5 a=2mm " L 5 a=2mm ,
2 3 4 2 3 4
Frequency (MHz) Frequency (MHz)
b

Figure 4.7  Plots (a) and (b) show the half-power width of the directivity pattern
for a single transducer and the steering width of the array, respectively.

Several observations can be made for H(0). First, it does not depend on the
attenuation constant o. Thus, one would expect the steering width of the array to
remain the same in either a lossy or a lossless medium for the same combination of
frequency and element radius. Second, a closer look at H(0) suggests that the only
independent variables are frequency f and radius a, which are contained in the (ka)
term. The value of (ka) will be a constant for cases in which the products of
frequency and radius are the same. In other words, the steering width for these
particular cases will be identical. In the parameter space investigated, if the radius of
the element is varied instead of frequency , the result closely resembled the result of
modifying the frequency as shown in Figure 4.7(b).

Figure 4.8 shows the simulation result of steering width versus (ka). Note that
the steering width is indeed unaffected by attenuation and that the relationship

between steering width and (ka) agrees with that given by H(®).
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Figure 4.8  Plot of steering width as a function of (ka). Plot (a) presents the
relationship without attenuation, while plot (b) presents the
relationship with attenuation.

4.7  Optimizing Output Using Design Parameters

In order to optimize the output of the system, an equation is needed to
describe the quantity to be optimized for the system. Since the intensity output of the
array is basically the superposition of all the element outputs, the equation for the
array must contain all the dependencies which appear in the single element case.
From Equation (4.2.1), the intensity is known to be proportional to the square of the
frequency and to the fourth power of radius. Assuming homogeneous media, the
attenuation effect can be accounted for by multiplying by an exponential term which
contains the attenuation coefficient. The resulting equation is

I(af)=K__ fia‘e?™ 4.7.1)

array

where Karay i @ constant which contains all the superposition effects of the array,
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fis frequency in megahertz and T is the tissue thickness in millimeters at which the
attenuation occurs. However, due the placement of the sources, every element “sees”
a different length of path through the tissue. Thus, an effective thickness must be
found which pertains to what the entire array “sees” as the tissue thickness. The
Equation (4.7.1) can be manipulated to yield an effective tissue thickness in the

following form.

K f2a4 f -1.1
T, =101n( : )(moé) (cm)  (4.7.2)

Effective tissue thickness then can be arrived at iteratively by using the
different combinations of frequency, radius, and intensity found in Chapter 4. The
result is summarized in Table 4.1.

Table 4.1 Effective tissue thickness at various actual tissue thickness.

T K T(effective)
4.0 mm 1.75 6.65 mm
50mm | 1.75 7.50 mm
60mm | 1.75 8.80 mm

To test whether or not Equation (4.7.1) describes the system precisely, a plot
of intensity versus frequency was generated by substituting the effective tissue
distance and Karray into Equation (4.7.1) (see Figure 4.9). The data from the

simulation are also included as circles for comparison.
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Figure 4.9 Comparison of the analytical form using Tesr and results from
simulation, where the tissue distance is 5 cm and the radius of
elements is 2 mm.

As can be seen, Equation (4.7.1) is a very good model that describes the
relationship between intensity and frequency. To find the frequency that will produce
the highest intensity at the focal point, one can utilize the maximum value property of
a continuous function and simply take the partial derivative of Equation (4.7.1) with
respect to a and f. Note here that since the effective attenuation path changes for
different tissue thicknesses, the optimal frequency also changes with a varying tissue

thicknesses. As an example, at a=4mm and T=5cm, the optimal frequency is

calculated to be about 2.24 MHz.

4.8  Optimizing Steering by Moving Focal Plane along the Beam Axis

An alternative method that can increase the steering width of the array is to
move the focal plane up or down the beam axis from the natural focal plane, where
the natural focal plane is defined as a transverse plane perpendicular to the beam axis

which contains the geometric focus of the array. However, this increase in steering
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width is achieved at the expense of decreased output intensity. Figure 4.10 shows the
plots of intensity and steering width of the array when the focal plane is varied over

the range of -2 to 2 cm from the geometrical focal plane in 0.5 cm steps.
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Figure 4.10 Intensity and steering width along the beam axis. Plot (a)
shows the varying in intensity as the focus moving along the z-
axis. Plot (b) shows the varying in steering width as the focus
moving along the z-axis.
The data from Figure 4.10(a) indicate that by moving the focal plane from the
plane containing the geometric focus, the intensity of the array drops very sharply.
At the + 2 cm mark, the intensity drops by an order of magnitude while the steering
width increased by a maximum of only 4 mm (see Figure 4.10(b)). The results of this

investigation suggest that this method is not an optimal way to expand the steering

width of the array.
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CHAPTER S
EFFECT OF MODIFYING
TRANSDUCER CHARACTERISTICS
In this chapter, changes in the characteristics of the transducer elements will
be examined to determine if they enhance system output, i.e., increase steering width
with minimal loss of focal intensity. Two approaches are evaluated, one using
transducers that have a Gaussian beam profile and the other utilizes focused

transducers. The results are compared to those using circular unfocused sources.

5.1  Using Gaussian Transducer
Breazeale et al. [16] have devised a way to fabricate a transducer that can

produce a Gaussian beam profile. The transducer cross section is illustrated in

Figure 5.1.

Figure 5.1 Simplified view of a Gaussian transducer in cross section,
shaded portion is transducer material.

The face of the transducer element, the radiating face, is covered entirely with
a ground electrode while the back electrode is connected to the positive lead of the
power amplifier. Then, the positive electrode is apodized to decrease the surface area

of the back electrode. The resultant beam has two very useful features. First, as the
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wave propagates, the sound pressure on the axis reduces gradually with distance. In
the radiated beam, none of the maxima and minima typical of the Fresnel zone of a
piston transducer appears. Second, the beam does not develop the side lobes
characteristic of the far-field directivity pattern of a piston transducer. This Gaussian
beam study was conducted with the expectation of extending the steering width of the

random sparse array.

5.1.1 Gaussian diffraction theory

Du and Breazeale [17] obtained a relatively accurate description of the
Gaussian beam from the basic linear wave equation. The details of the derivation are
included in Appendix E. Since the RZ grid needs a phase term for the pressure,
Equation (E.9) in Appendix E must be separated into real and imaginary parts.
Again, attenuation will not be taken into account as in the case of the non-Gaussian
piston source. By using all the related equations in Appendix E, the pressure
equation is derived to be the following

P(£,0)= Kge' ™" = K,e'® => P(r,z)=K4(sin0+ jeos0)  (5.1.1)

where

(5.1.2)

1 B
KG = [ oUo T T S N2 ?
(p ¢ )(,/H(BG)Z){eXp( 1+(Bo) )é ]

The above form looks exactly like the form of the equation for the non-apodized

source in Barich [12]. The difference is in how the constant and the angle are

defined.
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5.1.2 Analysis of the Gaussian beam study

Simulation cases have been run to compare the Gaussian beam and the non-
Gaussian beam. RZ-Grid Generator Module was modified to output the pressure field for
a transducer with Gaussian characteristics (see Appendix C). A value for B of 0.486 was
used in the Gaussian beam simulation as suggested by Du and Breazeale [16]. The
results are shown in Figure 5.2. Note that the pressure of the Gaussian transducer falls
off smoothly unlike the non-Gaussian transducer where there is a rapidly varying near-
field region. Both transducers produced pressure that is relatively close in magnitude at

10 cm, which is the focal plane of the array system.
pressure (Pa)
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Figure 52  Comparison of the pressure field along the z-axis for both the
non-Gaussian and Gaussian transducer.

The simulation also shows that the steering width of the Gaussian transducer
was not much better than for the non-Gaussian transducer at the same driving
frequency and radius (see Table 5.1). To verify this, the steering width for both the
Gaussian and non-Gaussian transducers was found experimentally use the equipment

at Labthermics Technologies, Inc (Champaign, IL). The steering widths found for -
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these two types of transducer, both by simulation and experiment, are tabulated in

Table 5.1.
Table 5.1 Steering width of the Gaussian and non-Gaussian transducer.
Transducer] Non-Gaussian Gaussian
Setting
Simulation 10.01 mm 11.50 mm
Experiment 9.6 mm 12.0 mm

The results of this study suggest that no gain can be realized by altering the
elements to produce a Gaussian beam profile. The present setup with non-Gaussian
transducers can generate intensities and steering widths, which are comparable to

those of a Gaussian transducer.

5.2  Using Focused Transducer

Next, the possibility of using a focused transducer to improve the steering
width of the array is investigated. The geometric configuration upon which the
derivation was based is shown in Figure 5.3. The points on the curved surface can be
described by the equation of a circle where the center of the circle is at the point (-R.,

0), and the radius is equal to the radius of curvature.

x-y plane

< > +z

z-axis (cm)

Figure 5.3  Graphical description of the convex transducer surface using
radius of curvature.
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Equation (5.2.1) shows the equation of the circle as described.
(z—(-R,))" + ((x2 +y*)-0)=R,] (5.2.1)
With a little mathematical manipulation, the above equation can be simplified to the

standard quadratic form.

22 +(2R )z +(x* + y*)=0 (5.2.2)

Thus, two values of z can be obtained by using the quadratic formula. However, only
the z value that is closest to the x-y plane is desired. The transducer can be changed
from an unfocused to a focused state in the simulation by adding the phase delays to
points along the flat surface of the unfocused transducer to emulate a curved surface.

The phase delay is defined as
phase =2n(-§—) (5.2.3)

A Matlab function was constructed to verify the above equations. The
function allows the focus to be positioned in either the positive region, toward the
tissue, or the negative z region. For the focus placed in the positive z region, at a
value less than 10 c¢m, the field from each source will converge at its focus, but then
diverge as it approaches the geometric focus of the array. For the focus in the
negative z region, the field will diverge as it approaches the geometric focus of the
array. A copy of the function is included in Section D.3. |

Figure 5.4 shows the results of the simulation for a single source. The plots
were compiled using the pressure profile at 10 cm, the geometric focal plane of the

array, for distance off axis , r, ranging form 0 to 1.5 cm, for various radii of
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curvature. The difference between Figure 5.4(a) and 5.4(b) is that the former used
negative radii of curvature while the latter used positive radii of curvature.

As the absolute value of the radius of curvature decreases, the magnitude of the
pressure at the center of the beam drops about an order of magnitude for a 3 cm
change in radius of curvature. This pressure reduction is due to the fact that the
energy from the main lobe is transferred to the side lobes. However, the calculated
beam width and, therefore, the steering width of the array did not change much with
varying radius of curvature. In fact, the beam width was still largely controlled by
the radius of these small elements. In conclusion, the focused transducer did not
prove to be a suitable method for optimizing the array.

pressure (Pa) pressure (Pa)

x 10° x 10

10 10

30

100 -10 100

-20

1
r (mm) 0 -30 radius of curvature (mm) r (mm) 0 radius of curvature (mm)

(@) (b)

Figure 5.4  Pressure magnitude as a function of radius of curvature
and r position. Plot (a) shows the varying in pressure with
negative radius of curvature. Plot (b) shows the varying in
pressure with positive radius of curvature.
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CHAPTER 6

CONCLUSIONS AND CLOSING REMARKS

This study has characterized various system parameter relationships for the
random sparse array. Several methods were examined in an attempt to optimize
intensity output and steering width of the array for a constant number of elements,
64. However, even though some of the methods examined could enhance one output
parameter, it was at the expense of the other. No one method was able to improve
significantly both of these output quantities simultaneously. The results of this
theoretical study suggest that the best system configuration is a random placement of
the 64 elements, with a radius of 2 mm, which is driven at a frequency about
2.23 MHz, for a 5 cm tissue thickness. This array system will produce a steering
width of 2 cm and the maximum intensity for a 5 cm thickness of homogeneous
tissue, as described in Section 4.7. However, in order for the 2 mm radius element to
produce the same intensity as the 4 mm radius element used in the experimental
hexagonal array, the transducer has to be driven at a considerably larger amplitude.
This modification may shorten the transducer lifetime. A more appropriate method is
to increase the number of elements in the array since the reduced element radius
leaves more surface area on the aperture for the random placement of more
transducer elements.

Future work should address the development of a more realistic computational
model. For instance, under actual clinical conditions, there will rarely be a layer of

tissue that is uniform in composition. In other words, scattering and refraction
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effects must be taken into account to better simulate actual physical conditions.
Also, the effect of perfusion should be studied using the bio-heat equation to
estimate the temperature changes of the tissue due to the ultrasound. This result
should be accompanied with actual experimental verification. In addition, the study
of a random sparse array by Erstad and Holm [15] indicates that it is possible to
mathematically produce a random array configuration that can produce an average
grating lobe level four times lower than for a simple pseudo-random positioning of
the array elements. Thus, it may be worthwhile to investigate a method to optimize
the positioning of the array elements to reduce the grating lobe levels.

In conclusion, the theoretical work shows that the random sparse array has
enormous potential as a noninvasive surgical device. The electronic beam synthesis
offers great flexibility for treating tissues in various locations with widely varying

volumes.

40



APPENDIX A.

RANDOM SPARSE ARRAY SIMULATOR

This appendix contains the simulation code for calculating the pressure profile
produced by the spherical shell surgical array. This code has been modified from its
previous form in many ways. The actual optimizations are described in Chapter 2.

The array system modeled by this code contains 64 randomly positioned ultrasound
transducer elements. Independent variables such as tissue distance and driving frequency
can be changed to study the system under various conditions. The total acoustic pressure
generated by the array at any point of the field is computed by superposition of all of the
pressure field of the individual array elements. The actual simulation code is listed

below.

”***************************************************************************

1/

1 Load Library of Functions
!/
”***************************************************************************
#include <iostream.h>

#include <math.h>

#include <stdlib.h>

#include <fstream.h>

#include <time.h>

#include <string.h>

#include <iomanip.h>

#include <stdio.h>

”***************************************************************************

1

i This first section defines the globals and subroutine that are to
/" be used in the simulation
/

J[RRR R AR KRR AR KRR OR K R R KRR Rk

// Structure Definitions
struct complex { / define structure for complex pressure
double rp,ip; // real and imaginary parts
IR
struct source { // define structure to be used for each source in array
float xcord,ycord,zcord; // location of source
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float phase,amp; // phase of source
float tissue_distance;
int element_number;

b

// Cylindrical source pressure amplitude calculation using the
// point source approximation. Using cylindrical symmetry

// Constructs the rz array for a single transducer

void get_rz_array(void);

// Load the sources activated instead of random select
void get_source_from_file(source [],const char [],const char []);

// determine phasing of the 64 sources to achieve desired focus
// Inputs are ramdom positions array and the focus location
void get_source_phasing(source [},const source,const char [J);

// Complete main grid calculation
void calculate_grid(const source [],const source,charf]);

// Declare globals

int number_of sources=64;// Reads in from state file-needed in grid
// calculation (64=default)
const int r_length=600;
const int z_length=1000;
complex rz_array[r_length](z_length]; // complex pressure array for
// single transducer S5cm by 10 cm

// spacing of .1 mm
float intensity_final;
float freq=2.133¢6;

J T

1

/ Program Main

/

[ AR R ko K AR R ok ok KRR RS KR kSR R R K K
main()

{

source source_array[64]; // max possible size for source array

char out_file_id[10];// name of output files

char randcord[10];// name of file contains random source position
char external_state_file[10];

char control_option,state_file option,source_location_option[1};
ifstream from_control_file; // link to control file

source focus;

//set up clock
clock t start, finish;
double duration;
start = clock();

cout << end];
cout << "Welcome to the Ramdomized Sparse Array Simulator" << endl;
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cout << "Reading From RZ-Grid" << endl;

//Load the rz array

get_rz_array();

//Read from control file

cout << "Reading From Control File" << end];
from_control_file.open("control",ios::in);
from_control_file >> control_option;

while (control_option =="Y") {
cout << "Run another? " << control_option << endl;

//Enter output identifier (5 char)?
from_control_file >> setw(6) >> out_file_id;
cout << out_file_id <<endl;

//Enter focus X,y,z in mm
from_control_file >> focus.xcord >> focus.ycord >> focus.zcord;
cout << "focus at " << endl;
cout << "(" << focus.xcord << """ << focus.ycord << ""
<< focus.zcord << ")" << end];

//Enter name of random source location file(TOTALLY RANDOMI!!Dif call for
from_control_file >> source_location_option;
cout<<"random(r) or hex(h)?"<<source location_option<<endl,
from_control_file >> randcord,;
cout << "source location file = "<< randcord << end],

//Establish source positions on shell
from_control_file >> state_file option;
cout << "Use external state file? " << state_file_option << end];
from_control_file >> external_state_file;
get_source_from_file(source_array,external_state file,randcord);
cout << "source state file = "<<external_state file << endl;

//Establish source phasing
get_source_phasing(source_array,focus,out_file_id);
cout << "Source Phasing Completed” << endl << end];

/I Complete main calculations
calculate grid(source_array,focus,out_file_id);
cout << "Main Grid Calculated " <<out_file_id << endl;

//load new control option
from_control_file >> control_option;
}; /1 close control while loop

// close stream to control file
from_contro!_file.close();

// print out total process time

finish = clock();

duration = (double)(finish - start) / CLOCKS_PER_SEC/60;
cout << endl <<end];

printf( "Total process time = %2.1f min\n", duration );
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return 0;

}// end main
”***************************************************************************
1

/" Subroutine get_rz_array

I

”***************************************************************************

void get_rz_array(void)

{

//write binary output file

FILE *infile;

infile=fopen("rz2mm2hz","rb");

for(int r=0;r<r_length;r++){
for (int z=0;z<z_length;z-++){

fread (&(rz_array[r][z]),sizeof(complex),1,infile);
}

cout << r <<end};

}
fclose (infile);
cout << "RZ-Grid loaded"<<endl<<end],

U***************************************************************************

1
I Subroutine get_source_from_file
1

”***************************************************************************

void get_source_from_file (source sarray[],const char state_file name[],
const char rand_file_name[])

ifstream from_xyz_file; // establish input stream
ifstream from_state_file;

source element_positions[108];

int discard,state;

int counter;

char buffer[100];

from_xyz_file.open(rand_file_name,ios::in);

//get rid of comment lines at top of file
from_xyz_file.getline(buffer,100);
from_xyz_file.getline(buffer,100);

//Read xyz cords (in mm) from file

for(int i=0;i<108;i++){
from_xyz_file >> element _positions[i].element_number;
from_xyz_file >> element_positions[i].xcord;
from_xyz_file >> element_positions[i].ycord;
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from_xyz_file >> element_positions{i].zcord;

}

from_xyz_file.close();

// Read the states of the sources from file and assign
from_state_file.open(state_file_name,ios::in);
from_state_file.getline(buffer,100);

counter=0;
for(int j=0;j<108;j++){
from_state_file >> discard;
from_state_file >> state;
if (state == 1){
sarray[counter].element_number=element_positions(j].element_number;
sarray[counter].xcord=element_positions[j].xcord;
sarray[counter].ycord=element_positions[j].ycord;
sarray[counter].zcord=element_positions[j].zcord;
counter+-+;

}
}

number_of sources=counter;
from_state_file.close();
}// end get_source_from_file

”***************************************************************************

I
/ Subroutine get_source_phasing
I

//***************************************************************************

void get_source_phasing(source sarray[],const source focus,const char id_string[])
{

ofstream to_phase_file;

int phase_int;

float distance_change,phase_change,distance_to_source;

char temp_id_string[10];

strepy(temp_id_string,id_string);
//Open stream to output phase output file
to_phase_file.open(strcat(temp_id_string,"pha"),ios::out);

// produce phase front at desired focus
for(int n=0;n<number_of sources;n++){
distance_to_source=float(sqrt(pow(sarray[n].xcord - focus.xcord,2)
+pow(sarray[n].ycord - focus.ycord,2)
+pow(sarray[n].zcord - focus.zcord,2)));//(mm)
distance_change=float( -102.26 + distance_to_source);//
phase_change=float(distance_change * 360/(1500/freq*1000)); //*360 degrees/wavelength(mm)
sarray[n].phase=float(phase_change * 3.14159/180);// convert to radians
sarray[n].amp=1 ;//- 100 * distance_change/102.26;

// 16 level quantization for phase
sarray[n].phase=float(sarray[n].phase/(2*3.14159)*16);

phase_int=int (floor(sarray[n].phase+0.5));
sarray[n].phase=float(phase_int*0.392699); //0.392699rad = 22.5 degree
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//end quantization
to_phase_file <<n <<" "<< sarray[n].phase << endl;

// Find distance traveled through tissue
// Interface at -50mm
sarray[n)].tissue_distance=(50/sarray{n].zcord)*distance_to_source;

to_phase_file.close();

}// end get_source_phasing

”***************************************************************************

"
/I Subroutine calculate_grid
I

N***************************************************************************

void calculate_grid(const source source_array[],const source focus,
char id_string(])

{

complex total_pressure,new_pressure;

// physical constants

const float alpha=0.0;

const float tissue_attenuation=float(0.005*pow(freq/1e6,1.1)*alpha); //Np/mm

//main grid variables

float ¢_scale,r_projection,z_projection,pressure_amp,intensity;
//float total_power,old_intensity;

float xpos,ypos,zpos;

float amplitude,angle;

int r_low,r_high,z low,z_high; // nearest points in rz grid

int counter;

ofstream to_grid_file;

float d_between_p1p0,d_between_p2p0,d_between_p3p0,d_between_p4p0;
float d_between_plp4;

float alphal,alpha2,alpha3,alpha4;

//open stream to output file
to_grid file.open(strcat(id_string,"grd"),ios::out);
cout << "Beginning Calculations" << endl;

/foutput attenuation status

if (alpha == 0.0){

cout << "Attenuation OFF" << endl;}
else {

cout << "Attenuation ON" << endl;}

//for each point in main grid, calculate complex contribution

//from each of the 64 sources

/1 x,y, z from -3 cm to +3 cm = -300 to +300 (by .1 mm)
intensity final=0;
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counter=0;
for(int z=0;z<1;z+=1){
for(int y=100;y>=-100;y-=2){
for(int x=-100;x<=100;x+=2){

xpos=float(x/10.0);ypos=float(y/10.0);zpos=float(z/10.0); //convert to mm
total_pressure.rp=0.0;
total_pressure.ip=0.0;
//Sum contributions from all sources for each grid point
for(int i=0;i<number_of sources;i++){
new_pressure.rp=0.0;
new_pressure.ip=0.0;
c_scale=(source_array[i].xcord * xpos
+source_array[i].ycord * ypos
+source_array[i].zcord * zpos)/
(source_array[i].xcord*source_array[i}.xcord
+source_array[i].ycord*source_array[i].ycord
+source_array[i].zcord*source_array[i].zcord);
r_projection=float (10.0*sqrt(pow(xpos-c_scale*source_array[i] xcord,2)
+pow(ypos-c_scale*source_array[i].ycord,2)
+pow(zpos-c_scale*source_array[i].zcord,2)));

//Exact radius measurement = 102.26 mm
z_projection=float (10.0*(102.26 - ¢_scale*
sqrt(pow(source_array[i].xcord,2)
+pow(source_array[i].ycord,2)
+pow(source_array[i}.zcord,2))));

//If r,z not in array range then error
if (((r_projection) > r_length))||
((z_projection) > z_length+500 )||
((z_projection) < 500 ))
cout << "source " << i << "out of range at "
<< Xpos << " " << ypos << M " << zpos << endl;
//Convert to rz grid (.1 mm spacing, 5 cm z offset)
//and average for smoother values
r_low=int (floor(r_projection));
r_high=int (ceil(r_projection));
z_low=int (floor(z_projection)+500);
z_high=int (ceil(z_projection)+500);

//putting in the weighting factor(alpha)
d_between_p1p0=float(sqrt((pow(r_low-r_projection,2))
+(pow(z_high-(z_projection+500),2))));
d_between_p2p0=float(sqrt((pow(r_high-r_projection,2))
+(pow(z_high-(z_projection+500),2))));
d_between_p3p0=float(sqrt((pow(r_low-r_projection,2))
+(pow(z_low-(z_projection+500),2))));
d_between_p4p0=float(sqrt((pow(r_high-r_projection,2))
+(pow(z_low-(z_projection+500),2))));
d_between_plp4=float(sqrt((pow(r_low-r_high,2))
+(pow(z_high-z_low,2))));
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alphal=float(1.0/d_between_p1lp0);
alpha2=float(1.0/d_between_p2p0);
alpha3=float(1.0/d_between_p3p0);
alphad4=float(1.0/d_between_p4p0);

//calculate new pressure
new_pressure.rp=(rz_array[r_low]{z_low].rp*alpha3
+rz_array[r_low][z_high].rp*alphal
+rz_array[r_high][z_low].rp*alpha4
+rz_array[r_high]{z_high].rp*alpha2)
/(alphal+alpha2+alpha3-+alpha4);
new_pressure.ip=(rz_array[r_low][z_low].ip*alpha3
+rz_array[r_low][z_high].ip*alphal
+rz_array[r high]{z_low].ip*alpha4
+rz_array[r_highj{z_high].ip*alpha2)
/(alphal+alpha2+alpha3-+alpha4);
//convert complex quantity to mag, angle form
amplitude=float(sqrt(pow(new_pressure.rp,2)
+pow(new_pressure.ip,2)));
if (new_pressure.rp > 0.0){
angle=float(atan(new_pressure.ip/new_pressure.rp)
+ source_array[i].phase);}
else{
angle=float(atan(new_pressure.ip/new_pressure.rp)
+ source_array[i].phase + 3.14159);}
//convert back to rp,ip
new_pressure.rp=amplitude*cos(angle);
new_pressure.ip=amplitude*sin(angle);
//Add amplitude scaling
new_pressure.rp=new_pressure.rp *source_array[i].amp;
new_pressure.ip=new_pressure.ip *source_array[i].amp;
// Attenuation due to distance in tissue (water attenuation=0)
new_pressure.rp=new_pressure.rp
* exp(-1 * source_array[i].tissue_distance
* tissue_attenuation);
new_pressure.ip=new_pressure.ip
* exp(-1 * source_array[i].tissue_distance
* tissue_attenuation);
//sum total pressure
total pressure.rp= total_pressure.rp + new_pressure.rp;
total_pressure.ip= total_pressure.ip + new_pressure.ip;
}
/lpressure amplitude is magnitude of complex pressure
pressure_amp =float( sqrt(pow(total_pressure.rp ,2)
+pow(total_pressure.ip ,2)));
//*.000114; //correction to get Pa(in mm)

// add the following to get max in a array of data
intensity=float(pow(pressure_amp,2)/(2.0%1500.0¥1026.0*10000));// W/cm2

if (intensity>=intensity final){
intensity_final=intensity;}

// send position and pressure to output file
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/fto_grid_file << xpos << " " << ypos <<" " << zpos<<" "

1 << pressure_amp * .000001<<" " //in MPa

/I << intensity << endl;// in W/cm2

/1 total_power=((intensity+old_intensity)/2.0)*.0001*10000*10;// W
// old_intensity=intensity;

//below move the pointer to the next row for the 3d-data //

to_grid_file << intensity <<" ";
if (counter==100 ){
counter=-1;

to_grid_file << endl;}
counter=1-+counter;

/lcout << x << endl;

}//end x-for loop

cout <<y << endl;
} //end y-for loop
/lcout << z << endl;
} //end z-for loop
//cout << "total power (W) " << total_power << endl,
cout << "Pressure grid calculated" << endl,
to_grid_file.close();
}// end calculate grid

”***************************************************************************

/
/! END SIMULATION
"

N***************************************************************************
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APPENDIX B.

ASCII-BINARY CONVERTER CODE

This code converts the format of the RZ-Grid from ASCII to Binary as described

in Section 2.3.3.

[/ A AR R KK R R K ok Rk ok Sk ok ook o ksl ok sk o sk R ks ook sk

/I

i Load Library of Functions

/"
”***************************************************************************
#include <iostream.h>

#include <stdlib.h>

#include <fstream.h>

#include <string.h>

#include <stdio.h>

struct complex{ // define structure for complex pressure
double rp,ip; // real and imaginary parts

I8

const int r_length=600;//large is 600  small is 300
const int z_length=1000;//large is 1000 small is 400

complex rz_array[r length][z length]; // complex pressure array for
// single transducer 6cm by 10 cm
// spacing of .1 mm

void get_rz_array(void); //declare subroutine.

g

1
/ Program Main
1
”***************************************************************************
void main(void)
{
cout << sizeof (complex) <<endl;
cout << sizeof (rz_array[0]{0]) <<endl;
//Load the rz array(ascii)
get_rz_array();
cout << "RZ array loaded"<<endl<<endl;

/Iwrite binary output file
FILE *outfile;
outfile=fopen("rz6émm2hz.21h","wb");//sml = smaller rzgrid file
for(int r=0;r<r_length;r++){
for (int z=0;z<z_length;z++){
fwrite (&(rz_array[r][z]}),sizeof(complex),1,outfile);
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}

cout << r <<endl,

fclose (outfile);
cout << "rzdata written"<<endl<<end],

}

void get_rz_array(void)
{
int zcord,rcord;
ifstream from_rz_file; // establish input stream
from_rz_file.open("smallrz",ios::in);

//Read rz array from file
for(int r=0;r<r_length;r++){
for(int z=0;z<z_length;z++){
from_rz_file >> zcord ;
from rz_file >>rcord ;
from_rz_file >>rz_array[r][z].rp;
from_rz_file >> rz_array[r][z].ip;
}
cout << r << endl;
}
from_rz_file.close();
}//end get_rz array

J[RAK IR KRR AR SRS KR R AR R
/

1 END PROGRAM

/

JJRRFEAAEAAEAAF AR KKF K KA A AR A A AR AR AR A AR R AR F AR K AR A AR AR K KA KKK

51



APPENDIX C.

GAUSSIAN PISTON SOURCE RZ GRID GENERATOR

This appendix contains the simulation code for computing the pressure field of a
single Gaussian piston source as discussed in Chapter 5. This computational model uses
an RZ coordinate system with the z-coordinate along the beam axis and r-coordinate
perpendicular to the beam axis. The complex acoustic pressure was derived in
Equation (5.1.2) and is implemented by the point radiator method in the simulation. The

actual simulation code is listed below.

[ AR RO R KKK KR R R K R KKK KKK Aok KSR o R KRR R R R ok ok Rk ok K

/
1 Load Library of Functions
I

//***************************************************************************

#include <iostream.h>
#include <math.h>
#include <stdlib.h>
#include <fstream.h>
#include <stdio.h>
#include <time.h>

JPRFERERRAE R AR AR AR F AR AR R Rk ok ook oo sk ek ok oo ok o ok o ook

/

/ This first section defines the globals and subroutine that are to
I be used in the simulation
/"

JEEFEF AR AR AR EEFR A A FF A AAAA KRR KA A ok kb ook oo ook o sk ok ok o ok o

// Structure for complex quantities
struct complex {
double rp,ip; // real and imaginary parts

b

/I Structure for vector quantities
struct vector {
float xcord,ycord,zcord; // e.g. location of source

I8
/" // Construct the rz array for a single transducer using
/ // pnt source methods
/ void construct_rz_array(void);

52



// Declare rz grid of complex pressure

/6 cminr, 10 cm in z, .1 mm point spacing
const int r_length=600;
const int z_length=1000;
complex rz_array;

J R e R e R it

/
1 Program Main
1

J[EEFAAAA R AR RRR R R R R R R kb O Rk K

main(){

//lcomplex pressure_at_point; / Summed pressure at rz grid
//char rz_output_file[20];// name of output file
ofstream to_rz_file; // establish output stream
clock t start, finish;
double duration;
struct tm *newtime;
time_t aclock;
start = clock();

// New constants and variables!!

const float pi=3.141592654;

const float speed_of sound=1500;// in m/s

const float surface velocity=0.1;// m/s

const float density= 1026; // Kg/m3

// Physical and spatial variables

// £=2 MHz, =4 mm

float delta_z,delta_r;

float freq = 2000000.0,radius=.002;

float omega=float(2.0*pi*freq); //radiant freq
float A, B=0.486; //gaussian factor for 2 < D/T <4
float sigma,ro,chi; /non-dimensional factors
float pressure_magnitude;
float gamma,theta;

cout << "Welcome to the Single Source G_Beam Construstor" << endl;
/I set up output stream
to_rz_file.open("gauss.dat",ios::out);

1 /[Construct the single rz array

ro=float(pow(radius,2)*omega/2.0/speed_of_sound);

// start filling pressure grid
for(int r=0;r<600;r++){// r from axis out to 6 cm

for(int z=500;z<1500;z++){
delta r=0.0001;
delta_z=0.0001,;
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sigma=z*delta_z/ro;

A=float(B/(1.0+pow(B*sigma,2)));

chi=r*delta_r/radius;

pressure_magnitude=float(density*speed_of_sound*surface_velocity
/sqrt(1.0+pow(B*sigma,2))*exp(-A*pow(chi,2)));

gamma=float((pow(B,2)*sigma/(1+pow(B*sigma,2)))*pow(chi,2)
-atan(B*sigma)+pi/2);
theta=-(omega/speed_of sound*z*delta_z)+gamma;
rz_array.rp=pressure_magnitude*
cos(theta);
rz_array.ip=pressure_magnitude*
sin(theta);

to_rz file <<z<<" "<<r<<" "
<<rz_array.rp <<" "
<<rz_array.ip <<endl;

} /1 end for grid z
// this index indicates the current r position!!
cout <<r << endl;

} // end for grid r

to_rz_file.close();//close streams to output files

/loutput process time

finish = clock();

duration = (double)(finish - start) / CLOCKS_PER_SEC/60;

cout << endl <<endl;

printf( "Total process time = %2.1{f min\n", duration );

time( &aclock ); . /* Get time in seconds */

newtime = localtime( &aclock ); /* Convert time to struct tm form */
/* Print local time as a string */

printf( "Process end at: %s", asctime( newtime ) );

return 0;

}// end main

[/ SRSk R R R R oKk ok oK o o ok o o o ok ok ok ook sk o o K Kk ok ok o ok ok o sk o s ok o o o o K K oK oK ok o o ok K ok ok ok o
/!

1 END SIMULATION
1

[/ ok sk sk o ok ok ok sk ko ok stk sk sk ok ok sk ook ok ok ko sk o o o o Ko SOk ok ook ok ok sk o o ok ok sk sl s ok ok o o kK KK sk ok o o Kk ok ok sk ok o koK
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APPENDIX D.

MATLAB FUNCTIONS

D.1  Extrapolation test function
This function tests the extrapolation scheme used in the RSAS. The only input
the function needs is the coordinate of the point where the magnitude of pressure is

desired. The result of this implementation is discussed in Section 2.3 .4.

function extrapol (r,z)

96*******************************

% Set intensity grid %
96*******************************
11=-1.0;

12=1.0;

13=3.0;

14=5.0;

O ok ok ok s ok ok ks ok o ok ko ok ok ok ok sk o o o o

% Set position grid
96*******************************
D=1,

zl=1;

rl=1;

96*******************************

% extrapolation for sides of the cell
96*******************************
ml1=(11-12)/D;

m2=(13-14)/D;

Ia=(11-m1*z1)+ml*z;
Ib=(13-m2*z1)+m2*z;

96*******************************

% extrapolation of intensity
96*******************************
m3=(Ia-Ib)/(-D);

I=(Ia-m3*r1)+m3*r
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D.2  Damping cap position randomizer

The function below will randomize the (r,0) position for the opening in the
damping cap on the circular piston source surface in an attempt to disrupt the regular
hexagonal pattern. The output file contains the new element positions to be used

by the RSAS,

function cap(RL,Rs)
format short

96**********************************************

% enter R(large) and R(small) to generate random position
% plots using tempcord which is xyzcord w/o

% heading.
96**********************************************

load tempcord

O/ % ok K ke sk o s o s ok ok s s ke s ke ok e ok sk ok sk ok ok ke ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok ok sk

% calculate randomized xyz coord.

Oy ook Rk ok ok sk koo ook ok ok sk ook ook s ook ook ook o ok sk ok o ok
theta=2*pi*rand(108);

Rs=Rs*rand(108);

for i=1:108,
x1(i)=cos(theta(i))*Rs(i);
y1(i)=sin(theta(i))*Rs(i);
end

x0=tempcord(:,2);
yO=tempcord(:,3);

for i=1:108,
new_x(1)=(x0()+x1(i));
new_y(i)=(y0(i)+y1(i));
new_z(i)=(sqrt((102.26)"2-((new_x(i)Y"2+(new_y(i))"2)));
index(i)=(i);

end
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96**********************************************

% write to file
96**********************************************
newcord(:,1)=(index");

newcord(:,2)=(new_x');

newcord(:,3)=(new_y");

newcord(:,4)=(new_z');

save newcord2. newcord -ascii

96**********************************************

% output visual to screen
96**********************************************
angle=0.0001:.05:2*pi;

[a,b]=size(angle);

for j=1:16,
for i=1:b,
xle(i)=cos(angle(i)) *(R1)+x0());
yle(i)=sin(angle(i))*(R1)+y0();
xsc(iy=cos(angle(i))*(2)+new_x(j);
ysc(i)=sin(angle(i))*(2)+new_y(j);
end
subplot(4,4,j),plot(xlc,ylc)
hold on
plot(xsc,ysc)
hold off
title(int2str(j))
axis equal
axis off
end
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D.3  Radius of curvature caculation
This Matlab function calculates the points on the curve surface of a
focused transducer given radius of curvature and element radius. A surface plot

is generated as output to illustrate the transducer surface.

function curve(R,f,a)

96************************************

% R = Radius of Curvature(mm)
% f = Frequency

% a = radius of the element(mm)
% R”2 must be > (a2 + a"2)

96************************************

op¥¥¥kkx  Known Variable ***%*
c=1500000 %mm/s

b=(2*R)
lambda=c/f;
%***** calculate quadratic equation ¥****
for y=a:-1:-(a);
for x=-(a):1:a;
Cc=X"2+y"2;
y1=abs(y-(a+1));
x1=abs(x+(at+1));
z(y1,x1)=(-b+sqrt(b"2-4*c))/2;
end
end

%***x%  Qurface plot of the curved surface *****
x=-a:l:a

y=a:-1:-a

mesh(x,y,z)
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APPENDIX E.

GAUSSIAN BEAM DERIVATION

This appendix contains the derivation of the Gaussian beam profile for a
single transducer element. A simple definition of variables in the derivation is
included in the Table E.1. If More detailed definition is desired, they can be found in

the paper by Du and Breazeale [17].

Table E.1 Derivation parameter listing.
Parameters Definition

a radius of the back electrode

f driving frequency

Po static density of the medium

® radiant frequency

p radial coordinate

c normalized axial distance form the source
4 normalized transverse distance from axis
B Gaussian coefficient of source

A Gaussian coefficient of sound field

T retarded time

P, sound pressure amplitude at center of transducer
P normalized pressure

To Rayleigh distance

o attenuation constant

Co speed of sound in medium
U, Surface Velocity

Du and Breazeale [17] obtained a relatively accurate description of the
Gaussian beam from the basic linear wave equation obtained by Ivar and Barkve [18§]

(see below)

¢ = o’
(48180 - V2 ~dar, F)ﬁ =0 (E.1)
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The linearized solution for an axially symmetric source which oscillates sinusoidally

in time is
p&.0,17)= Re[iq] (i,cr) exp(—ir - aroc)] (E.2)
where
(ko) =2 Ojexp(é 2 (2R (e (E3)

The boundary condition at the source (c=0) is
P(€,0,7)= q,(E)exp(~it) (E.4)
The Gaussian amplitude distribution at the source (c=0) is
q(§")=exp(-BE") (E.5)
where B is the Gaussian coefficient which is related to the thickness and the radius of

the back electrode, and can be determined experimentally. Next, Equation (E.5) is

substituted into Equation (E.3) to yield the following equation.

(o)== p(iij o R D)

which can be integrated to give

1 :
q(€,0)= mexp( I+(Bo)’ — jeXP(IY) (E.7)
where the phase shift is
B’c ) 4 n
Y = {(1+(B0‘)2)§ —tan™ (Bo)+ 2} (E.8)
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Then, by inserting Equation (E.7) into Equation (E.2), the amplitude of the sound

field produced by a transducer with a Gaussian velocity distribution is described by

exp(—ou,c
P, (5.0)= P, SHU) ) (£9)
V1+(Bo)
where A = _B is the Gaussian coefficient of the sound field and P, =p_c U,

1+(Bc )’

is the sound-pressure amplitude in the fluid in the center of the transducer.
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