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1 INTRODUCTION

The two lowest waveguide modes of an elastic plate can be described as the
propagation of a Rayleigh wave that starts on one surface, but that gradually transfers to
the other surface. It then transfers back to the surface from which it started, the whole
cycle taking place over a distance we call the beatlength. If the product of the wave
number and thickness is sufficiently large, one can thus view a plate as two weakly
coupled surface-wave waveguides. The objective of this thesis is to report measurements
of the beatlength in aluminum, brass and glass plates. This may be one of the first
detailed experimental assessments of this phenomenon, though its possibility has been

noted by Auld [1], Viktorov [2] and Brekhovskikh and Goncharov [3].

The longer service lives of structures such as pipelines mean that they must be
monitored for damage more thoroughly, and over a longer period of time. Using coupled
surface waves may be one way to inspect the inner and, therefore, not easily accessible
_surface of a pipe from its outer surface. Moreover, if the damage were a small surface-
breaking fatigue crack, then a surface wave would readily detect the crack because the
surface wave would strike it broadside, or if the damage was due ’;o corrosion, then a
surface wave would be more severely attenuated by the patch of corrosion at the surface
than a bulk wave. In a similar fashion, coupled surface waves may be advantageous in
the inspection of any walled container where the inner wall or the outer wall is not easily
accessible or inaccessible. Examples are aircraft frames, sealed containers and ship

frames.




The present measurements indicate that the coupled surface waves are readily

excited and detected so that they can be used for such non-destructive testing.



2 THEORY

The basic idea is presented graphically. Figure 1 shows the dispersion relation

for the two lowest, Rayleigh-Lamb modes (all figures/tables appear at end of thesis). The
lower curve is for the lowest antisymmetric mode, while the upper curve is for the lowest
symmetric mode. The vertical axis is the normalized angular frequency (@ multiplied by
(h/ ¢,), where h is one-half the thickness of the plate and c,is the transverse wave
speed). The horizontal axis is the normalized x,-component of the wave number (3
multiplied by @ #/c¢,). The short dashed line indicates the straight line formed by
w h/c, plotted against 8, @ h/c,, where f3, is the Rayleigh wave number. The slope is
(¢, /c,) ., where c, is the Rayleigh wave speed. In the neighborhood of the intersection
points of the long dashed horizontal line with the dispersion curves, the x,-particle
displacements are as sketched in Fig. 2. In Fig. 2(a) the symmetric mode is sketched, in
Fig. 2(b) the antisymmetric mode is sketched, and in Fig. 2(c) their algebraic sum is
sketched. If the symmetric and antisymmetric modes are both excited in phase, then the
sum approximates a Rayleigh wave on the upper surface. This is indicated by the solid
line in Fig. 2(c). However, each mode propagates with a slightly different normalized
wave number, S, for the symmetric mode and g, for the antisymmetric mode. After a
distance L /2, the two modes move 7 out of phase. Adding the two modes together at
this location approximates a Rayleigh wave on the lower surface, which is indicated by
the dashed line in Fig. 2(c). After propagating an additional distance L /2, the modes
move back into phase ( more accurately 27 out of phase ) and their sum approximates a

Rayleigh wave, this time on the upper surface. In this sense, the propagation of the two



modes can be viewed as a Rayleigh surface wave coupling from one surface-wave
waveguide to another. In Fig. 1, the vertical dashed lines indicate the difference 2¢
between the normalized wave numbers £, and S, . The difference between £, and g, is
almost equal to that between £ and f,. The beatlength, L, of the coupled waves is

that distance over which the two modes move out of phase by 27, that is,

@
2, -pIL=2n M)

or
_L__ e, )
h  whe 2)

where ¢ is depicted in Fig. 1. Brekhovskikh and Goncharov [3] give an estimate of &

for large B h . In our project, the exact dispersion relation was used to find g,, £, and

& . Appendix A contains a more detailed mathematical derivation of the beatlength.



3 MATERIALS AND METHODOLOGY
Three elastic plates were used: an aluminum plate 30.48 cm (1 f7) by 60.96 cm (2
/1) by 2.38 mm (3/32 in), a brass plate 30.48 cm (1 JH) by 45.72 cm (1.5 ft) by 2.38 mm
(3/32 in) and a glass plate 30.48 c¢m (1 ft) by 60.96 cm (2 ft) by 3.18 mm (1/8 in). The
brass and glass plates had no discernible surface coatings, while the aluminum might
have had a thin layer of oxide. The elastic plates were used as they were when obtained
from the manufacturers. No attempt was made to polish the surfaces or treat the surfaces

in any fashion so that the robustness of the beating phenomenon could be ascertained.

The longitudinal wave speed in aluminum, brass and glass was experimentally
determined as follows. Figure 3(a) shows the schematic diagram of the setup for
measuring the longitudinal speed. A focused 15 MHz Panametrics V3619 immersion
transducer was placed in the water tank facing the vertically placed elastic plate. The
transducer was set up via a Panametrics 5800 Pulser/Receiver, to work in standard
pulse-echo mode. The direction of the beam axis perpendicular to the surface of the
elastic plate was found by adjusting the focused transducer to an angle at which the
reflected ultrasonic signal was maximum. For all other angles, the ultrasonic beam will
not be reflected directly back onto the face of the transducer. Hence, for these angles,

the reflected signal will be weaker.

The adjustment was controlled by a positioning system that has a linear accuracy

of about 5 pm and a rotational accuracy of about 0.02°. Figure 4 shows a photograph

of this positioning system, the Daedal MC2000 controller and the Daedal MD23/M34



of this positioning system, the Daedal MC2000 controller and the Daedal MD23/M34
motor drive system. The motor assembly in the center of Fig. 4 consists of the two
rotational motors that control motion in the two rotational axes. The Daedal system also
allows movement in the three orthogonal directional axes. When the elastic plate is
eventually inserted into the water tank as shown in Fig. 3(a), and the positive x;-axis is
the direction pointing out of the figure, the positive x-axis is the direction pointing
vertically towards the bottom of Fig. 3(a), and the positive x;-axis is the direction
pointing horizontally to the right. On the Daedal MC2000 controller, the X;-axis is
controlled by the panel labelled ‘AXIS 1,” the x»-axis is controlled by the panel labelled

‘AXIS 3° and the x;-axis is controlled by the panel! labelled ‘AXIS 2°.

The 1024-point data record of the received temporal signals from both the
reflection off the near surface and the far surface of the elastic plate were recorded using
a Tektronix 11401 oscilloscope, at 500 MHz for aluminum and glass and at 200 MHz
for brass. The effect of changing the sampling frequency will be discussed in Chapter 7.
A program written in Matlab was then used to find the round-trip time taken for sound
to travel between :che near and far surfaces of the elastic plate and, subsequently, the
longitudinal speed in the elastic plate. The portions of the sampled reflected signal
corresponding to the reflections off the two surfaces of the elastic plate were isolated
and separated, and the round-trip time taken to travel between the two surfaces, 7, was

found by finding the maximum correlation coefficient between them.



The wave speed, in each case, is calculated as follows:
c=— 3)

where ¢ is the shear or longitudinal speed, ¢, the round-trip time sound takes to travel
from one side of the elastic plate to the other side, and 44, twice the thickness of the

elastic plate, since the thickness is 2A.

The shear wave speeds in aluminum, brass and glass were subsequently
experimentally determined as follows. Figure 3(b) shows the schematic diagram of the
setup for measuring the shear speed. The elastic plate was removed from the water,
wiped dried and placed horizontally over the water tank. The immersion transducer was
replaced by a V222-BA-RM normal incidence shear-wave contact transducer. This

transducer has a 7-u s delay line. Clover honey was used as a coupling agent. The

coupling agent was prepared as follows. A small amount of clover honey was boiled. A
large drop of honey, just large enough to cover the contact surface of the contact
transducer, was deposited onto the elastic plate before the honey cooled. The honey was
allowed to cool and harden for a minute. Honey was used as a coupling agent because of
its high viscosity. At 15°C, the kinematic viscosity of honey is 1200 compared to 0.01
for water, 1.0 for olive oil and 18 for glycerine. The contact transducer was then pressed
into the honey. The 1024-point data record of the received temporal signals from both
the reflection off the top surface and the bottom surface of the elastic plate was recorded
using a Tektronix 11401 oscilloscope, at 500 MHz for aluminum and glass, and at 200

MH: for brass. The shear speed was calculated the same way as the longitudinal speed.



With the longitudinal and shear wave speeds and the thickness of the elastic
plate, the beatlengths at different transmit frequencies were calculated as follows. A
Mathematica program calculates the symmetric wave number, £, and antisymmetric
wave number, £, at different transmit frequencies. Consequently, 8. and & can be

calculated as follows :

B+ 5
2

B~ Brean = (4)

)

The beatlength, L, and normalized beatlength, L/h, can be calculated using Eq. (2). The
spatial beat frequency, f,, is the reciprocal of L. Additionally, the Rayleigh angle, 6, is

calculated from

6, = sin” (™) (©)

where c,, 1s the speed of sound in water. A very good approximation (accurate to within
0.5%) for ¢, is [2]

¢, (087+112v) )

c 1+v

t



were used to mark the positions of the transmit signal and the reflected signal. To ensure
that the direction of the beam axis is perpendicular to the plate surface, the transducer
was moved along the x;-axis and the maximum reflected signal’s position on the
oscilloscope is monitored. If the plate is not positioned parallel to the x;-axis, the
reflected signal on the oscilloscope will move closer or farther from the transmit signal.
The elastic plate is adjusted until the plate is parallel to the x;-axis. Then, the transducer
was moved above water and rotated to the calculated Rayleigh angle, 8 . The transducer
was then moved toward the vertically placed elastic plate until the water jacket just
pressed against the plate surface. The water jacket was designed such that its extension
beyond the transducer’s element surface is the focal length of the transducer. As such, by
resting the water-jacket onto the plate surface, the focus can be on the surface of the
plate, resulting in the maximum transfer of energy. The transducer was also adjusted
such that the transducer was in a horizontal line with the broadband receive transducer, a
Deci Model SE 1025-H308 surface contact transducer. At this point, data were ready to

be collected.

The beatlengtil was experimentally determined as follows. With the transmit
beam at the Rayleigh angle and the transmit focus on the ela§tic plate, the transmit
transducer was precisely moved parallel to the elastic piate surface, along the x;-axis,
toward the receive transducer. The transmit transducer was moved in 200 g m intervals,
and at each interval, a 1024-point, 10 MHz data record of the temporal, received,
sinusoidal signal was recorded by the receive transducer. The sampling rate was judged

sufficient because the maximum transmit frequency used was 1.6 MHz. The RMS value

10



of the temporal, received, sinusoidal signal for each position was calculated and
recorded. The transmit transducer was moved a total distance at least three times the
estimated beatlength. For the range of measured beatlengths, this corresponds to
collecting between 150 to 750 RMS values. The RMS data set was Fourier transformed
using a 4096 FFT. The power spectrum was calculated to determine a peak in the power

spectrum corresponding to the beatlength.

The experiment was repeated for different transmit frequencies for three different

materials of varying thicknesses.

11



4 COMPUTER PROGRAMS
In Appendix B, the computer programs used in this project are collected. They
include the data acquisition program, written in C, rowscan.c, the Matlab program to
measure the speed of sound in the elastic plates, corr.m, the Mathematica program to
calculate the wave numbers, sym.ma, and the representative Matlab program to

determine the spatial beat frequency, 5933.m.

12



5 RESULTS
The longitudinal wave speeds in the aluminum, brass and glass plates were
experimentally determined to be 6902 m/s, 4536 m/s and 5257 m/s, respectively. The
correlation coefficients were calculated to be 80.81%, 76.02% and 68.70%, respectively.
A correlation coefficient of 100% means that the reflected signals off both surfaces have
exactly the same shape. In other words, the reflected signals off both surfaces have the
same frequency content. The received signal plots and the correlation coefficient plots

are shown in Figs. 6(a) and (b), Figs. 7(a) and (b) and Figs. 8(a) and (b), respectively.

The shear wave speeds in the aluminum, brass and glass plates that were used
were experimentally determined to be 3382 m/s, 2215 m/s and 3199 m/s, respectively.
The correlation coefficients were calculated to be 98.71%, 91.52% and 90.47%,
respectively. The received signal plots and their corresponding correlation coefficient
plots are shown in Figs. 9(a) and (b), Figs. 10(a) and (b), and Figs. 11(a) and (b),

respectively.

Using Eq. (6), the Rayleigh angles for aluminum, brass and glass were calculated

to be 28.92°, 47.58° and 31.53°. These were the angles used in the experiments.

Figures 12, 13 and 14 show typical measurements for aluminum (case 2 of Table
1), brass (case 4 of Table 2) and glass (case 5 of Table 3). Figures 12(a), 13(a) and 14(a)
show the spatially, amplitude modulated received signals from 50 mm, 100 mm and

50 mm scans, that is, the transmit transducer moved 50 mm or 100 mm, at 200 um

13



intervals, towards the receive transducer. Figures 12(b), 13(b) and 14(b) show the spatial
power spectrums of the signals from Figs. 12(a), 13(a) and 14(a) plotted against the
spatial frequency. The vertical lines in Figs. 12(b), 13(b) and 14(b) mark the theoretically
predicted spatial beat frequency in each case calculated using the exact dispersion

relation [1] and Eq. (1).

The experiment was repeated for five different frequencies with aluminum, seven
different frequencies with brass and five different frequencies with glass. The amplitude

modulated signals and their power spectrums for these cases are attached in Appendix C.

Figures 15, 16 and 17 plot L/h againstw h/c, for aluminum, brass and glass,

respectively. Error bars represent £10% of a theoretically predicted values have been

added so that the reader can have some basis of reference.

Tables 4, 5 and 6 summarize the results of the experiments conducted on
aluminum, brass and glass, respectively. In all three tables, f, the transmit frequency of

the transducer is varied to produce different w #/c, cases. To have a spatially
modulated signal, f >e¢. For reference, the ratio [ /¢ 1is tabulated using the

approximation expressed in Egqs. (4) and (5). The theoretical predictions and

experimental determinations for f,, the spatial beat frequency, L, the spatial beatlength,

and L/ h are tabulated as well.

14



6 UNCERTAINTIES
There were several assumptions made about the elastic plate that could introduce
some degree of uncertainty in our measurements. Also, there are experimental
uncertainties associated with the measurements. In this section, the sources of these
uncertainties will be identified and quantified where possible. Any steps taken to

minimize these uncertainties will also be discussed.

The elastic plates were assumed to be infinitely planar. This was assumed so that
the reflections off of the edges need not be considered, and is accurate provided that the
beatlength was measured away from the edges at the central region of the plate, and
provided that the planar dimensions of the plate were large when compared to the
thickness. Because the measurements were made in the x;-direction, a comparison of the
ratio of the size of the elastic plates in the x;-direction over the thickness, in the x:-
direction, might be revealing. For aluminum, brass and glass, the ratios are 256, 192 and
192, respectively. This suggests that elastic plates can be considered, for practical

purposes, to be infinitely planar.

The two surfaces of the elastic plates are also assumed to be parallel and without
any surface imperfections. A standard micrometer was used to measure the thickness of
the elastic plates. Due to the shape of the micrometer, it was not possible to measure the
thickness of the plate at the center of the plate where the beatlength was measured. The

thickness of the pfate at the corners was measured instead. The average thicknesses of

15



the aluminum, brass and glass plates were measured to be 2380 =+ 141 pum,

2381+ 121 um, and 3175+ 54 pm, respectively.

In the measurement of the longitudinal and shear speeds, there are discretization
uncertainties involved. Table 7 summarizes the uncertainties based on Eq. (9) below. The
Ac calculated in table 7 will account for both the uncertainty involved in the
measurement of the thickness and the discretization uncertainty involved in measuring

the round-trip time of sound between the surfaces, 7,

Ac At 24k

c 1 am ©)
In the measurements of the beatlength, the transmit transducer used waé a
focused 3 MHz Panametrics V3680 transducer. In this project, the frequencies used were
between 700 £Hz and 1.46 MHz. The continuous-wave sinusoidal transmit signal was
displayed and its frequency verified on the oscilloscope. There appear to be no problems
associated with getting a 3 MHz transducer to put out a waveform of a different
frequency. The only discernible effect was a variation in amplitude of the transmit signal
at different frequencies. As a result, the amplitude of the receiving signal varied with
frequencies. Since the amplitude information is not useful, the received signal plots used

in determining the beatlength, Figs 12, 13, 14 and Appendix C, were normalized, i.e., the

relative amplitude and relative power spectrum were plotted.

The positioning system used has a linear accuracy of about 5 z## and rotational

accuracy of about 0.02°. There are discretization uncertainties involved since data were

16



collected at 200 um intervals. Therefore, the beatlength was determined to be
200+ 5 pm. The experimental beatlengths that were measured lie between 9.9 mm and

45.5 mm. This represents an accuracy of between +0.44% (for L = 45.5 mm, the
maximum beatlength measured) to £2% (for L = 9.9 mm, the minimum beatlength

measured).

17



7 DISCUSSION
The objectives are to determine whether the beatlength could be measured, and if
so, to ascertain how robust the phenomenon is and, finally, to compare how well the

experimentally measured beatlength compares to the theoretical beatlength.

Appendix C contains the individual results from the 17 measurements made, five
from aluminum, seven from brass and five from glass. A representative case for brass is
presented in Fig. 13. Figure 13(a) shows the spatially, amplitude modulated received
signal plotted against position along the plate’s surface. Figure 13(b) suggests the power
spectrum of the signal from Fig. 13(a) plotted against the spatial frequency (1/distance).
The wvertical line indicates the theoretically estimated spatial beat frequency,
L _ me, [ (¢w). Figure 13(b) shows that the beat phenomenon is robust in the spatial
frequency domain, and in reasonable agreement with theory (see Table 5). The first
(extreme left) frequency peak is due to the finite spatial window in Fig. 13(a). The
second frequency peak is due to the periodicity between two beatlengths. Naturally the
more beatlengths that can fit into the spatial window in Fig. 13(a), the more
subharmonics of the beat frequency are likely to appear in Fig. 13(b). The representative

cases for aluminum and glass, which are shown in Figs. 12 and 14, are similar to Fig. 13.

Figures 15, 16 and 17 are the plots of L/ against @ & /¢, for aluminum, brass

and glass, respectively. The data points, represented by squares, are the measured
results. The data points represented by diamonds are the theoretically predicted results.

A £ 10% error bar is attached to each of the theoretically predicted results to provide a

18



basis of reference. The plots indicate that the measured values of the beatlength, L/4
normalized by the half-thickness of the elastic plate, are close to or within * 10% of the
theoretically predicted values. Brekhovskikh and Goncharov [3] suggest that £ 4 must
be large and their estimate of ¢ in Eq. (2) assumes this. However, in this project, the
values of B, / ranged from 2 to 5 and yet the coupling phenomenon can be observed

without difficulty.

The beatlengths indicate that the use of the coupled waves to access an inner
surface is realistic. None of the beatlengths is so great that the signals would become too

severely attenuated, with distance, to carry information from the far surface.

Initially, there had been concerns that, in addition to the two lowest modes, the
higher modes might be excited and, consequently, some power would be carried by them
and lost to the coupling phenomenon. This appears not to be the case, suggesting that
when the ultrasound beam is incident at the Rayleigh angle, only the two lowest modes

are excited.

19



8 FUTURE STEPS

In the process of this investigation of the Rayleigh surface-wave phenomenon,
several questions suggesting avenues of further research that went unanswered. One
such question is how robust is the phenomenon, if we send the transducer beam at angles
slightly off the Rayleigh angle? Another question is how far the surface wave can
propagate before the received signal becomes undetectable? This is basically an
attenuation issue. Another question is: the effects of the size and shape of the focal
region of the transducer have on the beatlength? The theory also has to be developed for
curved surfaces, so that eventually, experiments can be done on pipelines. It would also
be interesting to find how the presence of well-defined discontinuities, i.e. , cracks,

affects the received signal.

20
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Figure 1. The dispersion relation for the two lowest modes of an elastic plate. The

upper curve is the symmetric mode and the lower curve is the anti-symmetric mode. The
beatlength L =rc, /(¢w). Figure 2 indicates the particle displacement in the

neighbourhood of the intersections of the long dashed horizontal line with the dispersion
curves.
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Figure 2. A sketch of the x; particle displacements corresponding to the

neighbourhood of the intersections of the long dashed horizontal lines in Fig. 1 with the
dispersion curves. The solid lines indicate that the modes are in phase, while the dashed
lines indicate that they are 7 out of phase. (a) symmetric mode; (b) antisymmetric mode;
(c) algebraic sum of the two modes.
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(a)

Panametrics Model 5800 Pulser/Receiver  Tektronix 11401 Oscilloscope

] a .
\ / plate
T [ input signal
received signal ﬁ? SE e N
15MHz Panametrics V3619
immersion transducer T

water tank

(b)
Panametrics Model 5800 Pulser/Receiver  Tektronix 11401 Oscilloscope
/\ j ' ....... H plate

T | input signal | |C
e —— :

received signal CP

20MHz Panametrics V222-BA-
RM surface contact transducer

water tank

Figure 3. Schematic diagrams of the experimental setup for measuring (a) the
longitudinal speed and (b) shear speed in an elastic plate.

23




Figure 4. Photograph of the Daedal MC2000 Controller and MD23/ MD34 Motor /
Drive System.
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focused transmitter

water-filled jacket
brass plate

acoustic emission
transducer - receiver

L~

scanned toward
receiver

Figure S. A sketch of the experimental arrangement viewed from the top. The central
axis of the focused transducer makes an angle 6, with the vertical. The sound is coupled
to the plate by means of a water-filled jacket. The plate is otherwise loaded only by the
surrounding air. The focal point is placed at the plate surface and moved toward the
stationary receiving transducer.
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Figure 6. To calculate the longitudinal speed of sound in aluminum. (a) The length

1024 data record of the temporal, amplitude modulated, received signal. (b) The signal in
(a) is broken into two signals, each of length 1024, T1 and T2. T1 has its first 512 data
points set to zero and the next 512 data points identical to that of the signal in (a). The
first 512 data points of T2 have the same values as their counterparts in the signal in (a)
but have the next 512 data points set to zero. The correlation coefficient between the two

signals, T1 and T2, is calculated and graphically presented.
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Figure 7. To calculate the longitudinal speed of sound in brass. (a) The length 1024

data record of the temporal, amplitude modulated, received signal. (b) The signal in (a) is
broken into two signals, each of length 1024, T1 and T2. T1 has its first 400 data points
set to zero and the next 624 data points identical to that of the signal in (a). The first 400
data points of T2 have the same values as their counterparts in the signal in (a) but have
the next 624 data points set to zero. The correlation coefficient between the two signals,

T1 and T2, is calculated and graphically presented.
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Figure 8. To calculate the longitudinal speed of sound in glass. (a) The length 1024

data record of the temporal, amplitude modulated, received signal. (b) The signal in (a) is
broken into two signals, each of length 1024, T1 and T2. T1 has its first 512 data points
set to zero and the next 512 data points identical to that of the signal in (a). The first 512
data points of T2 have the same values as their counterparts in the signal in (a) but have
the next 512 data points set to zero. The correlation coefficient between the two signals,
T1 and T2, is calculated and graphically presented.
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Figure 9. To calculate the shear speed of sound in aluminum. (a) The length 1024
data record of the temporal, amplitude modulated, received signal. (b) The signal in (a) is
broken into two signals, each of length 1024, T1 and T2. T1 has its first 512 data points
set to zero and the next 512 data points identical to that of the signal in (a). The first 512
data points of T2 have the same values as their counterparts in the signal in (a) but have
the next 512 data points set to zero. The correlation coefficient between the two signals,
T1 and T2, is calculated and graphically presented.
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Figure 10. To calculate the shear speed of sound in brass. (a) The length 1024 data

record of the temporal, amplitude modulated, received signal. (b) The signal in (a) is
broken into two signals, each of length 1024, T1 and T2. T1 has its first 512 data points
set to zero and the next 512 data points identical to that of the signal in (a). The first 512
data points of T2 have the same values as their counterparts in the signal in (a) but have
the next 512 data points set to zero. The correlation coefficient between the two signals,

T1 and T2, is calculated and graphically presented.
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Figure 11. To calculate the shear speed of sound in glass. (a) The length 1024 data
record of the temporal, amplitude modulated, received signal. (b) The signal in (a) is
broken into two signals, each of length 1024, T1 and T2. T1 has its first 512 data points
set to zero and the next 512 data points identical to that of the signal in (a). The first 512
data points of T2 have the same values as their counterparts in the signal in (a) but have
the next 512 data points set to zero. The correlation coefficient between the two signals,

T1 and T2, is calculated and graphically presented.
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Representative data for aluminum, case 2 of Table 1. (a) The spatially,
amplitude modulated, received signal plotted against position along the plate’s surface
(250 RMS data points, 50 mm scan distance). (b) The power spectrum of the signal from
(a) plotted against the spatial frequency (1/distance). The vertical line indicates the
theoretically estimated spatial beat frequency, L =7c, /(¢ ®).
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Figure 13. Representative data for brass, case 4 of Table 2. (a) The spatially,

amplitude modulated, received signal plotted against position along the plate’s surface
(250 RMS data points, 50 mm scan distance). (b) The power spectrum of the signal from
(a) plotted against the spatial frequency (1/distance). The vertical line indicates the

theoretically estimated spatial beat frequency, L = 7c, /(¢ w).
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Figure 14. Representative data for glass, case 5 of Table 3. (a) The spatially,

amplitude modulated, received signal plotted against position along the plate’s surface
(500 RMS data points, 100 mm scan distance). (b) The power spectrum of the signal from
(a) plotted against the spatial frequency (1/distance). The vertical line indicates the

theoretically estimated spatial beat frequency, L=rc, /(cw).
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Figure 15. A plot of L/h against @ h/c, for aluminum. The data points, represented
by squares, are the measured results. The data points represented by diamonds are the
theoretically predicted results. A £ 10% error bar is attached to each of the theoretically
predicted results.
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Figure 16. A plot of L/h against w h/c, for brass. The data points, represented by
squares, are the measured results. The data points represented by diamonds are the

theoretically predicted results. A + 10% error bar is attached to each of the theoretically
predicted results.

36



25

20 ~

15

L/h

10 -

whlc,

Figure 17. A plot of L/h against w h/c, for glass. The data points, represented by
squares, are the measured results. The data points represented by diamonds are the
theoretically predicted results. A = 10% error bar is attached to each of the theoretically
predicted results.
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Table 1. The values of B., B,, B..&, B/¢e, L, L/h and f, were calculated for different
transmit frequencies, fand @ 4/ c, for a 2.38 mm aluminum plate. The Rayleigh angle, 6,
and the Rayleigh speed, ¢,, were also calculated using Egs. (6) and (7).

Material | Aluminum Thickness 2.38125
(mm)
¢ (m/s) 6902 ¢y (m/s) 3158
¢ (m/s) 3382 6.(°) 28.92
Case J(MHz) wh/c, B B,
1 1.20 2.65 0.863 1.125
2 1.26 2.80 0.903 1.119
3 1.33 2.95 0.934 1.114
4 1.4 3.10 0.959 1.110
5 1.46 3.24 0.978 1.106
Case & B B.le L(mm)
1 0.131 0.994 7.59 10.8
2 0.108 1.011 9.36 12.4
3 0.090 1.024 11.39 14.1
4 0.075 1.034 13.70 16.0
5 0.064 1.042 16.30 18.0
Case L/h £, (m”)
1 9.0 92.9
2 10.4 80.9
3 11.8 70.9
4 13.4 62.5
5 15.1 55.4
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Table 2. The values of f., B,, B..¢ .B/ &, L, L/h and f, were calculated for different
transmit frequencies, fand @ h/c, for a 2.38 mm brass plate. The Rayleigh angle, 6,

and the Rayleigh speed, c,, were calculated using Eqs. (6) and (7).

Material Brass Thickness 2.38125
(mm)
¢ (m/s) 4536 c, (m/s) 2069
¢ (m/s) 2215 6.(°) 47.58
Case f(MHz) wh/c, B. B,
1 0.73 2.59 0.802 1.133
2 0.80 2.82 0.877 1.123
3 0.86 3.06 0.930 1.115
4 0.93 3.29 0.966 1.108
5 1.00 3.53 0.991 1.102
6 1.20 423 1.033 1.090
7 1.33 4.70 1.047 1.085
Case g B, B le L(mm)
1 0.166 0.968 5.84 9.1
2 0.123 1.000 8.13 11.3
3 0.092 1.022 11.06 13.8
4 0.071 1.037 14.63 16.7
5 0.055 1.047 18.91 20.0
6 0.028 1.062 37.34 32.5
7 0.019 1.066 56.10 43.7
Case L/h fo (™)
1 7.7 109.8
2 95. 88.9
3 11.6 72.3
4 14.1 59.7
5 16.8 50.0
6 273 30.8
7 36.7 22.9
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Table 3. The values of B., B,, B..¢. B/ ¢, L, L’h and f, were calculated for different
transmit frequencies, fand @ h/c, for a 3.18 mm glass plate. The Rayleigh angle, 6, and
the Rayleigh speed, ¢,, were also calculated using Eqs. (6) and (7).

Material Glass Thickness 3.175
(mm)
¢y (m/s) 5257 c, (m/s) 2920
¢ (m/s) 3199 6.(°) 31.53
Case Jf(MHz) wh/c, B B,
1 0.70 2.18 0.696 1.183
2 0.80 2.49 0.833 1.162
3 0.90 2.81 0.941 1.147
4 1.00 3.12 0.998 1.135
5 1.10 3.43 1.032 1.127
Case &g B b le L(mm)
1 0.243 0.939 3.86 9.39
2 0.164 0.998 6.07 12.2
3 0.103 1.044 10.15 17.3
4 0.069 1.067 15.57 23.3
5 0.048 1.079 22.68 30.6
Case L/h £ (m!)
1 5.9 106.5
2 7.7 82.2
3 10.9 57.9
4 14.7 429
5 19.3 32.7
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Table 4. The measured and calculated values of L, L/4 and f, for different transmit
frequencies, fand w h /¢, for a 2.38 mm aluminum plate.

Material Aluminum | Thickness | 2.38125
(mm)

¢ (m/s) 6902 ¢, (m/s) 3158

¢ (m/s) 3382 6.(°) 28.92

Case f(MHz) ohlc, B.le

1 1.20 2.65 7.59

2 1.26 2.80 9.36

3 1.33 2.95 11.39

4 14 3.10 13.70

5 1.46 3.24 16.30

Theoretical Predictions

Case L(mm) L/h fo ()

1 10.8 9.0 92.9

2 124 104 80.9

3 14.1 11.8 70.9

4 16.0 13.4 62.5

5 18.0 15.1 55.4

Measured Values

~ Case L(mm) L/h £ (m)
1 9.9 8.3 101.3

2 11.2 9.4 89.1

3 12.0 10.1 83.0

4 15.5 13.0 64.7

5 16.1 13.5 62.3
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Table 5. The measured and calculated values of L, L/h and f, for different transmit
frequencies, fand w h/c, for a 2.38 mm brass plate.

Material Brass Thickness | 2.38125
(mm)

¢ (m/s) 4536 ¢, (m/s) 2069
c: (m/s) 2215 6.(°) 47.58

Case f(MHz) wh/c, B le

1 0.73 2.59 5.84

2 0.80 2.82 8.13

3 0.86 3.06 11.06

4 0.93 329 14.63

5 1.00 3.53 18.91

6 1.20 4.23 37.34

7 1.33 4.70 56.10

Theoretical Predictions

Case L(mm) L/h £, (m)

1 9.1 7.7 109.8

2 11.3 9.5 88.9

3 13.8 11.6 723

4 16.7 14.1 59.7

5 20.0 16.8 50.0

6 32.5 273 30.8

7 43.7 36.7 229

Measured Values

Case L(mm) L/h £ (m)

1 10.2 8.6 97.7

2 12.4 10.4 80.6

3 15.7 13.2 63.5

4 17.1 14.4 58.6

5 22.1 18.6 452

6 35.6 29.9 28.1

7 45.5 38.2 22.0
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Table 6. The measured and calculated values of L, L/4 and f, for different transmit
frequencies, fand @ h/c, for a 3.18 mm glass plate.

Material Glass Thickness 3.175
(mm)

¢ (m/s) 5257 Cr (m/s) 2920
¢ (m/s) 3199 6.(°) 31.53
Case S (MHz) wh/c, B.le

1 0.70 2.18 3.86

2 0.80 2.49 6.07

3 0.90 2.81 10.15

4 1.00 3.12 15.57

5 1.10 3.43 22.68

Theoretical Predictions

Case L(mm) L/h £ (m’)

1 9.39 5.9 106.5

2 12.2 7.7 82.2

3 17.3 10.9 57.9

4 233 14.7 42.9

5 30.6 19.3 32.7

Measured Values

Case L(mm) L/h £ (m)

1 9.9 6.2 101.3

2 12.2 7.7 81.8

3 17.4 11.0 57.4

4 22.7 14.3 44.0

5 31.5 19.8 31.7
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Table 7. An assessment of the accuracy of the longitudinal and shear speeds in the various
elastic plates. The following variables are tabulated: the round-trip time taken from one
face of the elastic plate to the other and back to the first face of the elastic plate, #; the
thickness of the plate, 24; the longitudinal or shear speed in the various elastic plates, c,
calculated using Eq. (3); and Ac; which is calculated using Eq. (9).

Material 2h A2h t At | Speed c Ac Ac
(mm) | (mm) | (ns) | (ns) (m/s) | (m/s) | (%)
Aluminum | 2.381 | 0.141 690 2 C 6902 | 429 6.2
Aluminum | 2.381 | 0.141 | 1408 C 3382 | 205 | 6.1
Brass 2.381 | 0.121 | 1050
Brass 2.381 | 0.121 | 2150
Glass 3.175 | 0.054 | 1208
Glass 3.175 | 0.054 | 1985

c 4536 | 252 5.6

Ct 2215 118 53
Ci 5257 98 1.9
Ct 3199 58 1.8

N N W ) N
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APPENDIX A DERIVATION OF BEATLENGTH
A.1  Introduction
Assuming a thin, isotropic and homogeneous elastic plate with infinite planar
dimensions, an acoustic surface wave beating phenomenon can be observed with an
ultrasound beam impacting the aforementioned plate at the Rayleigh angle. The derivation

for the beatlength from first principles follows.

A.2  Terms and Definitions

Let the plane of the elastic plate be defined by the x;- and x-axes and the center of
the elastic plate be x; = 0. The top and bottom surfaces of the elastic plate are defined as
being at x;=/h and x;=-h, respectively.

The following is a partial list of symbols. When appropriate, defining equations

and relationships are introduced.

f frequency

w=2nrf angular frequency

¢ longitudinal wave speed

¢ transverse or shear wave speed

=— longitudinal wave number

¢
@
H=— transverse wave number
Ct
& projection of the longitudinal wave number onto the x;-axis. Also the

projection of the transverse wave number onto the x;-axis
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#, = F-E = A= =Fy,

projection of the transverse wave number onto the x;-axis
Ve =N 1- ﬂ )
or=kih=% }’Ih

O}zﬁth'Z/}/,h

A.3  Scalar and Vector Potentials

Assume guided acoustic waves are launched along the x;-direction by a wave
incident at an angle with the normal to the plate equal to the Rayleigh angle. Standing-
wave patterns will be set up along the x;-direction while a traveling wave will propagate
along the x;-direction. The scalar and vector potentials can be written as follows : |
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Q= [(11 COS(k3x3) + Cz Sin(k3x3)]ei(¢‘fx—ct)

=[Cl cos(k;hx ;) + C, sin(k;hx 3)]ei(5“—c‘) (A1)

Y= [Dl cos(#,x;)+ D, sin(ﬂ(jxj)]ei(grl—cf)

= [ D, cos(#,hx,) + D, sin(#;hx, et (A2)

A.4  Displacement Equations

The term #; is the displacement amplitude of the surface wave on the plate
traveling along the x;-direction. The acoustic beam is assumed to impact the plate in the

x;- x; plane making an angle of incidence equal to the Rayleigh angle.

op ¥
P T A3
" e A, (A3)

dp ¥
P 4
“Ta, A, (A4)

A.5 Boundary Conditions

The boundary conditions on the plate for free waves are as follows.

At x, = *h, the stresses on the surface of the plate are given by

L,=1,=T;=0 (A.5)
where T is the component of the stress in the Jj-direction on a plane perpendicular to the /-

axis. The generalized Hooke’s Law for an isotropic body is given by

Iy = ﬂZ €0 + 218y (A.6)
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where ¢, is the strain tensor component in the j-direction on a plane perpendicular to the

i-axis. For small strains,
1{ &, ﬁlj-
e, =—| —+—+
o2&, &

A.6  Symmetric Wave Displacements

The potentials are
o =[C, costhyx,) +C, sin(kyx,)|e& )
¥ =D, cos(#,x,) + D, sin(#x,) | %~

The corresponding particle displacements are

u, = [ifC1 cos(k,x,) = #,D, cos(ﬂl3x3)]ei(¢““°’)

Uy, = [— Ck, sin(k,x,) +iéD, sin(?f3x3)]ei(¢““c')
At x, ==h,

iC,o, sin(k,x,) + phD, sin(#,x,) =0

phC, cos(o,) +io,D, cos(o,) =0

The dispersion relation is found by demanding a non-trivial solution for the two

equations. The vanishing determinant gives
0,0, tan(o,) + (ph)* tan(o,) = 0
which can be rewritten as
vy, tan(#hy,) + p* tan(#hy,) = 0

The x;-displacement becomes
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cosh(#hly,‘&) ( 1 )COSh('g‘hl}’II&) i(ac)_ﬁ""”‘]

u, =Cs ~|1-= e "
cosh(‘é"hly,b 203 COSh(¢h|}’tb

where C, =i&, cosh(lo;l)

Similarly, the x;-displacement becomes

1) .
_—iCJy)| sinh@hlyx) (-3 stk | (=, )

", = -

*= B | cosh(hly,)) .l| cosh(= by, )

A.7 Brekhovskikh’s and Goncharov’s Estimate

Starting from the dispersion relation:
¥y, tan(#hy,) + p* tan(#hy,) = 0

Assuming that | #hy, | and | %y, | are large,

tan(#hy,) = i tanh(FHy,)) = ,~(1 - Ze—mly,l)

tan(#hy,) =i tanh(?/h‘yt‘) ~ i(l _ 2e—24¢hlr,])
After substituting into the dispersion relation:
7’17t(1 _ 26—27h|)’1|) + ,02(1 _ 2e—2afh|y,|> ~0

2%y, ~2%hy,|

Let FB=ry.+p" =2yye +pP2e

£,B)~ (BB, )8,

—Byx’ B By1-P’ 1

where 1B = \/1 —p? \[Kz _p? +28- 2p°
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Setting 5. = —¢
—2amy,| e—z:eh{y,|]

[f. )]

p’ [e

£~ =2 (A.25)

B=5,

The particle can now be approximated as

u =C, cosh(‘;’/hl}/,[_x_B) _(1 1 2) cosh(‘#hlyt i&) ei(;(ﬂ,—s)xl—a) (A.26)
cosh(ZHy ) 28°) cosh(#Hy.|)

1)
-G 7] sinh(ﬁh{y,|g3)_(ﬁr ‘2) sinb(# hly,x.) ei[g(ﬂ,-a)xl-cz] A2
3 B. cosh(# hly, ) .. | cosh(z hly.|) '

A.8  Asymmetric Wave Displacements

The potentials are
0 =[C, cos(hyx,) + C, sin(k,x,)]e& (A.28)
¥ = [D, cos(#,x,) + D, sin(#x; ) e+~ (A.29)
Proceeding just as we did for the symmetric case, the dispersion relation is found to be
v, tan(#hy,) + p* tan(#hy,) = 0 " (A30)

Setting 3, = 8. + & , the x;-displacement becomes

. Cﬂ[sinh(ﬁhlnl&) (24 sinh(f«hty,tm}e{f’f—xl-al A3

cosh(#hly) ' 2p°) cosh(#Hy,)

Similarly, the x;-displacement becomes
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bil| cos@ple) 1 cosh(@blyfx,) | ()

th =~1C, cosh(#Hy,) (1 1 j cosh(#Hy,)) ' (A.32)
23
Moreover,
0 =C. sinh(ﬁhly,‘&) _(1_ 1 oj sinh(ﬂlh]y,l&) ei(w(tz:u)xl—a] (A33)
cosh(##y ) 26" ) cosh(Fhjy,)
and
i Mx,—ct
713:‘ = _iCa J}/_I‘ COSh(?(hl}/l !E:‘;) - 1 COSh(W h|yl t}:?) [ C' ] (A34)
B. cosh(ﬂfhly,f) ( 1 j COSh(WhIV ,|)
1 - 2—BT

By forming the sums u,, = u,, +u, and u, = u,, +U,,, we arrive at the approximate

Rayleigh wave displacements sketched in Fig. 2.

A.9 Beatlength
The beat length is determined from the exponential terms of the displacements.

The displacement equations can be written as

u,, = C A, (x,)exp(i#pB,x, ) exp(—i#ex, ) (A.35)
u,, = C,B,,(x,)exp(i#p, x,) exp(i#ex,) (A.36)

so that u, =u, +u,
= Cexp(iBx,) exp(—itex, | A, (x,) + B, (x;) exp(2e, )| (A37)

The expression for u3, is similar.
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There are two exponential terms in this expression:

2
exp(/#fx,) which varies with L, = %?

and exp(2#%ex,) which varies with L, = gg

Because ))&, Lo+ Ly

The beatlength L is L,.

52

(A.38)



APPENDIX B COMPUTER PROGRAMS

Program B.1. Sym.ma

This Mathematica program takes the transmit angular frequency, w, the longitudinal speed
of sound , cl, the shear speed of sound, ct, the half-thickness, h, as inputs and solves two
transcendental Lamb dispersion equations. There are three outputs, the first beta output is
f3., the second beta output is 3, the third output is the ratio of the shear speed over the
longitudinal speed. This is the trivial case solution to the transcendental equation.

ClearAll[w,kappa,cl,ct,k,h f g betal;

kappa = ct/cl;

H=wi/ct;

w=0.93e6*2*Pi;

cl=4536;

ct=2215;

h=(0.00238125)/2;

= Sqrt[(1-beta”2)] Sqrt[(kappa’2-beta”2) ] Tan[ H h Sqrt[kappa’”2-beta”2]] + ((beta"2-
0.5)/beta)*2 Tan[H h Sqrt[1-beta"2]};

NumberForm[FindRoot[f==0,{beta,3 },MaxIterations ->50],10]

g = Sqrt[(1-beta"2)]Sqrt[ (kappa™2-beta”2) ] Tan[ H h Sqrt[1-beta”2]] + ((beta”2-
0.5)/beta)*2 Tan[H h Sqrt[kappa”2-beta”2]];

NumberForm[FindRoot[g==0, {beta,2.25} Maxlterations ->50],10]

NumberForm|N[kappa],10]
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Program B.2. Rowscan.c

This (" program is a data acquisition program resident in a 486 PC that interfaces with the
Tektronix 11401 Oscilloscope and captures the screen data. This was written by Kay
Raum and used with permission. When run, this program will prompt the user to supply
the following information, filename, scan axis(1 or 2 or 3), stepsize(in yum) and length of
scan row(in mm). Two output files will be generated, a binary file with filename.bin |
which contains the unscaled integer signal points (1024 for each scan) and an ASCII file
filename.dat, which contains waveform and scan information.

/*
| This program is written by Kay Raum ]
| T used some good ideas from Nadine B. Smith and Kate Hillsley. |
| It is written to create a set of A-scan lines along one axis. |
| The distance between two A-scan lines (stepsize) and the total |
| length of a scan row is selectable as well as the axis of the l
| Daedal system, which is used. The direction of the scan |
| is always in the positive axis direction. You have to select the |
| trace of the signal, which you want to grab from the Tektronix |
| scope, too. |
|
I
!
|
n

| You should take care, that the scope is running in enhanced mode,
| otherwise scan information will not stored correctly.

| Two files will be created. A binary file with extension .bin

| contains the unscaled integer signal points (1024 for each scan).

| information. You have to transfer the files separately in binary |
| or ascii mode, respectively. To read the files in matlab, you 1
| should use my function file.m |
I |
| For questions and suggestions, send an e-mail to |
| raum@uibrl.brl.uiuc.edu |

l

|

/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\'/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\/\ * /

#include <conio.h>

#include <stdio.h>

#include <string.h>

#include <stdlib.h>

#include "c:\qc2\include\msgraph.h"
#include <time.h>

#include "c:\at-gpib\c\decl.h"

#define ERR  (1<<15)  /* Error detected */
#define TIMO (1<<14) /* Timeout */
#define RQS  (1<<11)  /* Device needs service  */
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void introduction(void);
void init_parameter(void);
void init_files(void);

void init_device(void);
void measure(void);

void disable device(void);

FILE
*fopen(),
*ptr_dat,
*ptr_bin;

char filebin[25],
filedat[25],
command[30],
wait[20],
wim[250],
op,
asr[4];

char ax_number;

unsigned long int inter;

int  gpib0,
devO,
devl,
dev2,
dev3;

struct data

{
unsigned long int number point,
numscan;
float xincr,xmult,xzero,ymult,yzero;

b
struct data info;

main()
{
introduction();
init_parameter();
init_device();
init_files();
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measure();
disable device();

j

void introduction()

{
X

_clearscreen( GCLEARSCREEN);

printf("\n\n\n\n ROWSCAN.C");

printf("\n Collects RF data on a row.");

printf{"\n You can select the distance between two scanpoints (stepsize)");
printf("\n and the total length of the row.\n");

printf("\n Scaninformation will be stored in c:\\bti\\file_nam.dat");
printf("\n Unscaled Values will be stored in c:\\bti\\file_nam.bin");

}

void init_parameter()
{
static char fileout{5],
filenam[50}="c:\\bti\\",
intervall[3],
distance[20];

unsigned long int dist;

printf("\n Enter a 6 char output filename ")
scanf("%s" fileout),

strcat(filenam,fileout),

strepy(filebin, filenam),

strcat(filebin," .bin");

strepy(filedat, filenam),

strcat(filedat,".dat");

printf(" Enter the scanaxis (1, 2 or 3) ")
ax_number=getche();

op=getche(),

printf("\n Enter the distance between collected waves: ");
scanf("%s",intervall);

printf(" Enter the length of the row in mm ")
scanf("%s",distance);

inter=atoi(intervall);

dist=atoi(distance),

info.numscan=(1000*dist/inter+1);

printf("\n %u Scans of a row will be created.",info.numscan);
switch(ax_number)

{
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case'l":
dev1=ibfind("axis1");
strcpy(command, "MN A10 1V.01 D");
strcat(command, intervall);
strcat(command, " G ");
strepy(wait," 1R ");
break;

case'2':
dev1=ibfind("axis2");
strcpy(command, "MN A10 2V.01 D),
strcat(command, intervall);
strcat(command, " G ");
strepy(wait," 2R "),
break;

case '3"
dev1=ibfind("axis3");
strcpy(command, "MN A10 3V.01 D");
strcat(command, intervall);
strcat(command, " G ");
strcpy(wait," 3R ");
break;

default:
printf("\n unknown axis");
op=getche();
_clearscreen( GCLEARSCREEN);
exit(0);

}

void init_device(void)
{
static char trace[4],
output[12],
select[12];

printf{"\n\n Enter Trace (e.g. tra3) ")
scanf("%s" trace);

gpibO=ibfind("gpib0");
devO=ibfind("tekdev1");

ibwrt(dev0,"DIG RUN ",8);
strepy(output,"OUTPUT "),
strepy(select,"SELECT "),
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strcat(output,trace);
strcat(select,trace);
printf("\n--%s--", output);
printf("\n--%s--",select);

ibwrt(dev0,output,strlen(output));

ibwrt(devO0,select,strlen(select));

ibwrt(dev0,"ENC WAV:bin ",12);

ibwrt(dev0,"BYT LSB ",8);

ibwrt(dev0,"ABB ON ",7);

ibwrt(dev0,"WFM YMU:1 ",10);

ibwrt(dev0,"WFM NR.pt:1024 ",14);

ibwrt(devO0,"wfm?",4);

ibrd(dev0,wfm,250);

sscanf(wfm,"WFMPRE
ACSTATE:ENHANCED,NR .PT:%lu,PT.FMT:Y,XINCR:%g, XMULT:%g,XZERO:%g,
YMULT:%g,YZERO:%g",

&info.number_point,&info xincr,&info.xmult,&info.xzero,

&info.ymult,&info.yzero);

printf("\n\nPoints : %lu",info.number_point);

printf("  Xincr : %g",info.xincr);

printf("  Xmult : %g",info.xmult);

printf("  Xzero : %g",info.xzero),

printf("\nYmult : %g" info.ymult);

printf("  Yzero : %g",info.yzero);

printf("\n%s",wim),

ibwrt(devl," F ",3);

ibwrt(devl," E ",3);

}
void init_files() -

{

if ((ptr_dat = fopen(filedat,"w")) == NULL)
{
printf(" error opening data file \n"),
exit(0);
;

if ((ptr_bin = fopen(filebin,"wb")) == NULL)
{
printf(" error opening binary file \n");
exit(0);
}
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fprintf(ptr_dat,"%g %g %g Yolu %lu %g %g %lu",info.ymult,info.yzero,
info.xincr,info.number_point,info.numscan,info.xmult,info.xzero, inter);
fprintf(ptr_dat,"\nymult yzero xincr number_point numscan xmult xzero stepsize\n")
fclose(ptr_bin);,

fclose(ptr_dat);

}

void measure()
{
unsigned long int 1,j,delay;
static char curv[2060];

if ((ptr_bin = fopen(filebin,"ab")) == NULL)
{
printf(" error appending to binary file \n");
exit(0);
;
printf("\n\nPlease wait!!! ");

for(i=0;i<=(info.numscan-1);i++)
{
printf(".");
ibwrt(devO0,"curve?",6);
/*  for(delay=0;delay<=3500;delay++)
{
printf(".");
}
printf("/n->"); */
ibrd(dev0,curv,2058);
ibwrt(devl, command, strlen(command));
for (j=9;j<=2056;j++)
{ ,
fputc(curv[j],ptr_bin);
;
while (asr[1] I="R")
{
ibwrt(dev1,wait,strlen(wait));
ibrd(devl,asr,3),
}
asr[1] = "B/,

}
fclose(ptr_bin);

}

)
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void disable device()
{
ibwrt(devl, "F "2);
ibwrt(dev2, "F ",2);
ibwrt(dev3, "F ",2);
/* ibsic(gpib0);  */
/* ibonl(gpib0,0); */
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Program B.3. Rowscanb.bat
A batch file that takes the file, rowscan.c and outputs the following files, rowscan.exe,
rowscan.obj and rowscan.map.

REM rowscanb.bat 8/16/95

REM _

cl /AL /c /O /Gs /Forowscan.obj rowscan.c

pause

link rowscan,rowscan,, ¢:\at-gpib\c\mcib+c:\qc2\lib\llibc7 /CO /STACK:16000 /SE:512
/MAP /NOE /NOD

pause

rowscan.exe
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Program B.4. Corr.m

This MatLab file takes as input the two output files from rowscan.exe. The purpose of this
program is to ascertain the speed of sound, ¢ (whether longitudinal or shear) in a plate. Its
outputs are two plots, one of the waveform and another, of the correlation coefficient, and
the numerical values of the following parameters, the correlation coefficient (7x/2), the
sampling interval (xincr), the time interval between echoes (delta_t) and the speed of
sound (c). This program, as presented below, assumes a 3/32 in. plate. If this is not true,
the number, highlighted in bold in the program code below, will have to be changed to the
correct plate thickness value. It also assumes that the data collected by rowscan.exe have
the echo reflected off the near surface of the plate in the first 512 data point window,
represented by T2, and the echo reflected off the far surface of the plate in the next 512
data point window, represented by T1.

% corr.m
% This function loads bin and dat file
% each A-Scanline is one column of matrix B

clear
n=input(‘Enter a filename : ','s),

bin=[n '.bin"];
dat=[n'.dat'];

fid=fopen(dat,'r');
A=fscanf(fid,'%f,[8,1]);
ymult=A(1,1);
yzero=A(2,1);
xincr=A(3,1);
number_point=A(4,1);
numscan=A(5,1);
xmult=A(6,1);
xzero=A(7,1);
stepsize=A(8,1);
status=fclose(fid);

fid=fopen(bin,'rb','g’);
B=zeros(number_point,numscan);
B=fread(fid,[number_point,numscan],'short’);
status=fclose(fid);

B=B";
B=B.*ymult,
B=B+tyzero;

T1=B(1,:);
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T2=B(1,:);

for i=512:1024
T1(i)=0;
end

fori=1:512
T2(1)=0;
end

Tx12= xcorr(T1,T2,'coefl);
[x,y] = max(Tx12)

figure

subplot(211)

plot(B(1,2);

subplot(212)

plot(Tx12);

ylabel(‘correlation coefficient')

xincr
delta_t=(y-number_point)*xincr

c=2%3/32*%2.54e-2/delta_t

clear n; clear bin; clear dat; clear fid; clear status; clear A;
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Program B.5. b933.m

The purpose of this Matlab program is to calculate the spatial beat frequency of the
Rayleigh surface wave on a plate, given the raw data supplied by the two output files from
rowscan.exe. This file output two plots, one of the waveform and another, of the power
spectrum of the waveform. The program code, as presented below, assumes a transmit
frequency of 0.933 MHz and assumes the material is brass. If this is not so, the value of
px, highlighted in bold, which is the theoretically predicted spatial beat frequency for brass
at 0.933 MHz, will have to be altered. In this project, different material-transmit
frequency case have their own individual version of this program, e.g., g700.m will mean a
version of this program for glass-0.700 MHz.

% This function loads bin and dat file
% each A-Scanline is one column of matrix B

clear
n=input('Enter a filename : ','s");

bin=[n 'bin'];
dat=[n'.dat'];

fid=fopen(dat,'r");
A=fscanf(fid,'%f,[8,1]),
ymult=A(1,1);
yzero=A(2,1);
xincr=A(3,1);
number_point=A(4,1);
numscan=A(5,1);
xmult=A(6,1);
xzero=A(7,1),
stepsize=A(8,1);
status=fclose(fid);

fid=fopen(bin,'rb",'g");
B=zeros(number_point,numscan);
B=fread(fid,[number_point,numscan],'short’);
status=fclose(fid);

B=B’;
B=B.*ymult;
B=B+yzero;

time = (xzero + xincr : xincr : xzero + number_point*xincr)*1e6;
distance = 1527*time* 1e-6*100;

for tscan =1:numscan
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rms(tscan) =0;

for counter = 1:number_point
int1(counter) = (real(B(tscan,counter)))"2,;
end;

int2(tscan) = mean(int1);

rms(tscan) = (int2(tscan))"(1/2);

end;

ydistance = 0:stepsize/1000:stepsize/1000* (numscan-1);
figure;

subplot(211)

plot(ydistance,rms,'r");

ylabel(' Amplitude(volts)");

xlabel('distance(mm)’);

mrms = mean(rms);

nrms = rms -mrms;

Y = fft(nrms,4096),

Pyy =Y .* conj(Y) / 4096;
f=(1/2e-4) * (0.2047) / 4096;
subplot(212)

plot(f Pyy(1:2048),'r),
axis([0 100 0 1e-9))
py(1)=0;

for i=1:1001

px(1)=59.73;

py(i+1) = py(i)+ le-11;
end

hold
plot(px,py(1:1001),'y");
xlabel(‘frequency(Hz)');
ylabel('power spectrum'’);

%clear n;
clear bin;
clear dat;
clear fid;
clear status;
clear A;
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APPENDIX C EXPERIMENTAL RESULTS

The following figures represent experimental results of measured beatlengths for
five cases of aluminum, seven cases of brass and five cases of glass.
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Figure C.1.  (a) The spatially, amplitude modulated, received signal plotted against
position along an aluminum plate’s surface (250 RMS data points, 50 mm scan distance).
(b) The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
92.9 m”. The frequency used was 1.2 MHz. The experimentally measured spatial beat

frequency is 101.3 m,
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Figure C.2. () The spatially, amplitude modulated, received signal plotted against
position along an aluminum plate’s surface (250 RMS data points, 50 mm scan distance).
(b) The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
80.9 m”. The frequency used was 1.26 MHz. The experimentally measured spatial beat

frequency is 89.1 m’.
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Figure C.3.  (a) The spatially, amplitude modulated, received signal plotted against
position along an aluminum plate’s surface (250 RMS data points, 50 mm scan distance).
(b) The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
70.9 m™. The frequency used was 1.33 MHz. The experimentally measured spatial beat

frequency is 83.0 m’.
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Figure C.4.  (a) The spatially, amplitude modulated, received signal plotted against
position along an aluminum plate’s surface (500 RMS data points, 100 mm scan distance).
(b) The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
62.5 m™. The frequency used was 1.4 MHz. The experimentally measured spatial beat

frequency is 64.7 m”.
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Figure C.5.  (a) The spatially, amplitude modulated, received signal plotted against
position along an aluminum plate’s surface (500 RMS data points, 100 mm scan distance).
(b) The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
55.4 m”. The frequency used was 1.46 MHz. The experimentally measured spatial beat

frequency is 62.3 m’.
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Figure C.6.  (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (150 RMS data points, 30 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
109.8 m”'. The frequency used was 0.73 MHz. The experimentally measured spatial beat

frequency is 97.7 m'.
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Figure C.7.  (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (250 RMS data points, 50 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
88.9 m”'. The frequency used was 0.80 MHz. The experimentally measured spatial beat

frequency is 80.6 m’.
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Figure C.8.  (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (250 RMS data points, 50 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
72.3 m”. The frequency used was 0.86 MHz. The experimentally measured spatial beat

frequency is 63.5 m”.

73



a)

0.8

0.6N;

0.4

0.2

relative amplitude

0 ! ] ] 1 1 1 ] ! 1
0 5 10 15 20 25 30 35 40 45 50

b) distance (mm)

1 T T T 1 T T T T

relative power spectrum

- ) |. . . ! B e
0. 10 20 30 40 50 60 70 80 90 100
frequency (1/m)

Figure C.9.  (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (250 RMS data points, 50 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
59.7 m’. The frequency used was 0.93 MHz. The experimentally measured spatial beat

frequency is 58.6 m’,
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Figure C.10. (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (350 RMS data points, 70 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency

(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
" 50.0 m”. The frequency used was 1.00 MHz. The experimentally measured spatial beat
frequency is 45.2 m,
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Figure C.11. (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (750 RMS data points, 150 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,

30.8 m”. The frequency used was 1.20 MHz. The experimentally measured spatial beat
frequency is 28.1 m',
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Figure C.12. (a) The spatially, amplitude modulated, received signal plotted against
position along a brass plate’s surface (750 RMS data points, 150 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
22.9 m’'. The frequency used was 1.33 MHz. The experimentally measured spatial beat
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Figure C.13. (a) The spatially, amplitude modulated, received signal plotted against
position along a glass plate’s surface (250 RMS data points, 50 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
106.5 m”, The frequency used was 0.70 MHz. The experimentally measured spatial beat
frequency is 101.3 m™. ’
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Figure C.14. (a) The spatially, amplitude modulated, received signal plotted against
position along a glass plate’s surface (250 RMS data points, 50 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,
82.2 m’. The frequency used was 0.80 MHz. The experimentally measured spatial beat
frequency is 81.8 m’.
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Figure C.15. (a) The spatially, amplitude modulated, received signal plotted against
position along a glass plate’s surface (500 RMS data points, 100 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,

57.9 m!. The frequency used was 0.90 MHz. The experimentally measured spatial beat
frequency is 57.4 m',
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Figl.Jr'e C.16. (a) The spatially, amplitude modulated, received signal plotted against
position along a glass plate’s surface (500 RMS data points, 100 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,

42.9 m’. The frequency used was 1.00 MHz. The experimentally measured spatial beat
frequency is 44.0 ni’,
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Figure C.17. (a) The spatially, amplitude modulated, received signal plotted against
position along a glass plate’s surface (500 RMS data points, 100 mm scan distance). (b)
The power spectrum of the signal from (a) plotted against the spatial frequency
(1/distance). The vertical line indicates the theoretically estimated spatial beat frequency,

32.7 m’. The frequency used was 1.10 MHz. The experimentally measured spatial beat
frequency is 31.7 m’,
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