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1. INTRODUCTION

' Pe;spective and Motivation
 31trasound is widely used in medical diagnostics. A@plicafions
clgde_fetal examination, diagnosis of cardiac problems, and blood-
*lgﬁ méasurements. Although acoustic imaging is useful in its own
\ﬁtués a complement to x-ray examination, it is also desirable
eCa@sg low-level acoustic irradiation appears to be safer than that
sing X ray. Yet, it is known‘that sufficiently high acoustic inten-
'; y;levels can destroy tissue, so that care must be exercised in
’ltrasogic irradiation of tissue. Topics currently under investiga-
tioﬁ‘include the mechanisms of acoustic effects on tissues and the
’eﬁeis at which these effects are manifested.
. ‘It.is well known that warm-blocded creatures depend on a care-
‘glly_regulated internzal temperature for proper system functioning.
¥ isr§ossible for acoustic irradiation to interfere with this temper—
ture balance, because the tissues are, in general, "lossy,” meaning
that some fraction of the acoustic wave energy is absorbed by the
;tissue and converted into héat. It is thought that this energy loss
»Ccurs as friction,_by‘means of a bulk—viscdsity mechanism.

This thesis is concermed with the possibility that unexpectedly
,high levels of heat genmeratiom might result froﬁ the nonuniform. wave

.distributions which develop within irradiated tissues. The wave
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distributions are nonuniform because each tissue component possesses

distinct acoustic characteristics. Refraction and reflection at com—

ponent interfaces can result in positive reinforcement of the wave, or
& resonance. The degree of nomuniformity depends on the mismatch

between the material properties and on the shapes of the distinct com—~

ponents.

This issue has been addressed by A. K. Chan and co-workers (1974),
who determined the amount and distribution of heat generation in lossy
tissue, for the specific case of longitudinal and shear wave propaga-—
tion through multiple plame layers. For that problem, they verified
that maximum heating always occurs at the layer boundaries; the amount
of heating is dependent on the layer thicknesses and acoustic property
mismatches.

H. N. Xritikos and H. P. Schwan (1972; 1975) énalyzed the similar
problem of heat generation by electromagnetic waves (termed "heating
potential”) in conducting spheres, of radii 5 and 10 cm. The latter
sphere notably resembles a baby’s head in both size and éhape. For
intermediate frequency ranges, maximum heating occurs near the center
of the sphere, and otherwise is found at the fromt boundary. A later
paper (Kritikos and Schwan, 1976) extended tﬁis work to include multi-
layered spheres, which can be configured to correspond even more
closely to a baby's head. Their most recent work (Kritikos and Schwan,
1979) analyzes the éffects of heat conduction, and heat convection by

-

means of blood flow.




_P:oblem to Be Solwved

~The ultimate knowledge desired in the search for hot spots in

ue components is the temperature distributions withiﬁ'the.objects.

The wave energy loss is analyzed for two cases, an infinitely

gmcyliﬁder and a sphere. It is assumed that each object has a
;1loésy interier, similar to tissue, and that it is surrounded
é.ioSSless material {assumed solely for simplicity) with different
ogsfiéaivproperties, similar to water. The lecss cccurring in the
terlortof eaéh object has been calculated for the situation of a

an: iw%ve, originating an infinite distaﬁce away, being incident on
Qﬁjéct. These calculations were made for various object sizes and
bﬁéficéi‘properties, in order to eliciﬁ general trends in the loca-
1¢ﬁ$ én§ fglative magnitudes of "hot spots.”

fiﬁebcflinder and‘sphere were chosen for examination.p%rtly for
eometrlﬁai‘simplicity, and also because of biological felevance.

any vessels, tubes, axons, fibers, and small bones can be grossly




'd~as cylinders. Also, certain cell masses, such as glands,

tumors, and young fetuses are approximately spherical.

‘Approach for Solwving Problem



propagation, and then applying boundary conditions to arrive at a
specific solution, by determining the values of the weighting coeffi-

clents of the series expression; this scheme follows iherstandard

pattern for solving boundary-value problems.

Both the object and its surroundings are composed of fluid-like

materials, so that the analytical approach is used to calculate wave
solutions ("interior" and "scattered”) for "soft," i.e., nonrigid,

cylinders and spheres. However, as a check of the computational

- method, the p and % distributions (scattered only) are also obtained
for rigid objects, for which case results are available for compariscn

which are known to be correct (see Section 3.2.1). However, all

mmmerical work was dome with regard to the soft cylinder only.

A1l célculations were performed om a Cyber 175, using programs

written in FORIRAN Extended, Version 4, including the package "FORSIM," .
“on which the numerical work is based. The pressure and velocity dis-
 tfibuti0ns, and both of the estimated loss distributions, have been

plotted in the form of isomagnitude contours; in addition, isophase

contours are available for pressure and velocity. These plots make

possible visible interpretation of the computational results.
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2. THEORETICAL ANALYSIS AND COMPUTATIONAL METHODS

2.1 General s

"The subsequent analysis of acoustic wave spatial distributions

under lossless conditions is based on the following "first—order” wave

equations:
Dot w . '
5z = “pe v - (1la)
and
23 =

oy = =Vp : (1b)

<k

These.equétions are stated in terms of two wave variables, the scalar

pressure (p) and the particle velocity vector (i), and two material

parameters, the acoustic velocity (¢) and the demnsity (p). .

The first-order equations assume that the pressure and velocity

‘amplitudes are small emough such that the particie displacements are .

linearly dépeudent on the pressure gradient; therefore, Equations 1

are Validvonly for lower-—intensity waves. A second assumption, that the
'Lwave propagates adiébatically, is discussed in Section 2.4; this con-

dition means that the entropy content of the.wave remains approximately

constant during compression (Morse ané Ingard, 1968:230). Finally,

the use of the scalar—variable pressure instead of the stress temsor
‘;follGWs from the assumption that all particle motion is longitudimal,

so thét'no shear wave 1s present. This assumption is justified as

" ,§01lowS, as shown by L. A. Frizzell (1975): because of its relatively




in tissue, the shear wave exists only near the bound-

shere it is created by mode conversion. Although the high atten-

"is low, owing to the relatively low conversion in tissue . of

from an incident longitudinal wave to a reflected or transmitted

" +he derivative——the motion is still first order, of course)
"of pressure, by differentiating (la) with respect to time

‘substituting for 3u/9t from (1b):




simply denoted as p. Since the source wave is assumed to vary sinu-
soidally with time, the steady-state solutions for the wave variables

‘dre conveniently represented with complex notation:

Re[p(x, ¥)1 3

plz, &)

where

p, ) = p' (@)exp(~iwt) (%)

and where r is the coordinate position vector, 1 represents /:f, and
w is the angular frequency of the source wave. The use of -7 follows
Morse and Ingard (1968512) and simplifies subsequent wave expressions.
; Note the use of the underscore, as in p, to denote a complex quantity.
The complex variables, such as p, depend on ﬁime and space, just as do
the real variables,‘such as p. Both sets of variables can be used
interchengeably in linear relations, in particular in the first-order
Wavelequations. The complex amplitudes, such as Qf,.are only spatially
dependent and thus provide a concise description of the steady-state
solution. Finally, the magnitude and phase of a complex quantity p

are written as Ug[and<i12; respectively.

'2.2'-Calculation‘offWave Distributions——Analytical Approach

- 2.2.1 Soft cylinder. It is desired to find the acoustic wave
distribution resulting when a source plane wave is incident om a "soft"
cylinder, as shown in Figure 1.

-

The wave equations (1) in terms of cylindrical coordinates are




(a)

- ‘Incident piane

Y

wave //”,___
_/ x=a X
\/
Ay
(b z = O (arbitrarily)
X = rcos ¢
y=rsing
X
A VAVACa 2
P U, region 2
Tllustration of soft-cylinder problem geometry. (a) Three-

Figure 1.

dimensional drawing of cylinder of radius z and.of infimite
extent in the Z direction, showing cylindrical coordinate

system and incident plane wave (travelling in the +r direc-
tion). (b).Cross section of cylinder,. showing polar coor-

dinate subsystem, wave compomnents, and region definitioms.
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where », ¢, and 2 are unit vectors in the indicated directioms.
For the specific case pictured in Figure 1, all variables are

independent of the coordinate z, so that Equations 5 reduce to the form:

. ouU ‘

p(r, 6, ) _ 2 (118 1 e

3t = Tpe [2}8? rur) iz 3¢ (6a)
and

I?’_L:(Pa ¢, t)__ ;;Ep_"‘lgp__' -

ot - [‘ 3+ ¢M aq';J (603
where

u = fu? + $u¢ _ (7)

. However, coupled wave equations (6) are presented here mainly for

later reference. The wave solution is found much more easily by com-
bining ﬁhe relations into a single second—-order equation in terms of a
single variable {(p). After the solution for p is obtained, an expres-—
sion for @ can be found from (6b).

The cqmbined-wave equation (2) (derived imn Section 2.1), written

using polar coordinates, is




2
2 3 - e2v2p
8t
2[T1) 5 [ 8p)  [1)3° (8)
=@E;}‘a‘~:(frﬁ+b}—§] o
SEe 7 e3¢

This equation can be solved by the method of separation—of-variables,
resulting in a genéral solution containing a sinusoidal time factor,

a radial factor in terms of cylindrical Bessel functioms, and a
Sinusoidal anguiar factor. The proposed total solution of (8) is made
up of a linear combination of all possible solutions of the form just
described:

pz, ¢, t) = {Z

(4,7 () + B T (k)] cos(mqs)}exp(—v:wt) (9
m=0 - '

where X is the wavenumber, ém and §m are complex weighting amplitudes,
and Jﬁ and Yﬁ are cylindrical Bessel functions of the first and second
kiﬁd, respectively, and of order m. Only the cosine function is used
for angular aependence, because the problem is symmetrical with
respect to the x—axis, or the line ¢ = C.

The wave equation (8) must be solved separately in the two
régions shown in Figure 1. The pressure within the interior of the
cylindef (region 1) is denoted by P> while the pressure outside

(region 2) is given by The symbol Es rapresents the scat-

s +p..
‘ b, TE;
tered component, and p. is the known imcident plane wave (Morse and
Lered 15 incicent

Ingar&, 1968:401), travelling in the + 2 direction:



i2

Qi(x’ t)y =P exp[i(kzx - wt)]

P exp{i(kzr cos ¢ = wt)]

s

- - S
= [P T kyr) + ¥ (?_P'im)Jm(kzr)cos(mqb) Jexp(—im‘b \
m=1
r=a (10)
where P is the wave amplitude, and ¢ is the cylinder radius. Note the
use of the subscript "2" to signify values of constants describing the
properties of the material in region 2 (and similarly for region 1).

The incident wave component can be thought of as the wave which
would be present everywhere (not just in regiom 2, where it is used
for this problem) if the cylinder were not present. The latter condi-
tion occurs if the acoustic properties of region 1 are identical to
those of region 2.

Certainly, gw and 23 + B; must satisfy the wave equatign (8).
Because the. equation is linear, Es and.gi (in addition to gw) must
individually be valid solutions. It can be readily verified in Equa-
tion 10 that E;'is of the required form (9). Expressions are sought
for B, and Es which are also of this general form. In fact, the fol-

C-]

lowing more specific forms are proposed:
gw(r, o, T) ={: Z E%Jﬁ(kir)cos0w¢) exp(~twt), 0 =r =a (1la)
' m=0 =

and

S H (kzr)cos(m¢)]‘exp(—imi),' » é a (11b)

where




13

@'m(kzzﬂ) = Jm(kzr*) + 7 Ym(kzr») (12)

is the Hankelbfunction of the first kind and of ordér m, and E% and

§m are complex weighting amplitudes (to be determined). AThé;function
Yﬁ(klr) is not included in the expregsion for p, because Yﬁ(klr)“+ -
(for all qfders m=0, 1,...) as » -+ 0, which would prevent'gw from
being finite everywhere in region 1, as required phyéically.v The
Hankel function is used to express Py because gﬁ represents an outgoing
wave as r > <, as shown in Hildebrand (1562:147-154).

Before the boundary conditions can be applied (to solve for E%

'and §%), expressions must be obtained for Uy By and Z; (the velocity

vectors corresponding to gw,'gs, and B;s respectively) in terms of E%
and §%. The wvelocity wvectors are found by substituting the expressions
for pressure given in Equatioms 1lla,b and 10 into the wave equation
(6b). The velocity ¥ is obtained as a pair of scalars: thé radial
component'gf, and thg tangential component g¢. Accordingly, the wvector
wave equation for wvelocity is first rewritten as a paiﬁ of scalar

equations:

ou_(r, ¢, ) :

S R Y 24 ”

ot h m dr o (132)
and

U, (r, 4, ) ' '

o> - 1) 3p 1

3E {sz 36 | (13b)

xpressions for the radial velocity components are thus immediately
. ¥ P

found from Equation 13a and Equations 1la,b and 10:




. i v ; L
U,,(Ts &5 1) = Z:: {}_/OJl(klr) + 7 (%Z’/’l] L’m+1(kf’) -, & 7]
m=1 .
X cosGw¢)}exp(—iwt) e 1l4a)
; -z 7 . T z ' - ‘
Lo Fs 9 t) = ZZ {§OE_1(1<2.(‘) + ij (5§m] [gm_*_l(kzr*) - j._,’“_l(kzr)]
x cos(m¢)}exp(—iwt) (14b)
and
- 2 L —_ _’_[:_ ( 7. ;‘ .n
CLTR T 2 CAC PR L Ro?) = T (k)]
X‘cos(m¢)}exp(—imt) (lde)
 where
Zl =050 , (15a)
and
Z2 = 0,25 (155b)

(The quantities Z. and Z2 are called characteristic acoustic impedances.)

1

Tn obtaining the above expressions, the following relation (Morse and

Ingard, 1968:7-8) concerning derivatives of Bessel functions is used:
L7 @] = H, @) -7 @] (16)
dem® m+l m=-1

where

J_@ = 07 @ | an




15

- Equations 16 and 17 also hold true with J replaced by # (or 7).

Although they are not needed for the application of boundary con-

ditions, expressions for the tangential velocity component u, are also
:presented now. The formulas for g¢ are obtained in-fgé same manner as
" those for Yo except that Equation 13b is used instead of (lﬁa),;
."resulting in X ©
: - 1 y 7 i (1770 T Y
%w(r, 6, %) T { ) i,nJm(klf)[m Sln\?mp)]}eXp( zwz) {(18a)
1 1 ‘m=1l
u, (r, ¢, t) = t [ E S H (k. rylm sin(m¢)] exp (—twt) (18b)
_¢3 = 3 Y3 Zz - sz imzl—fn:_?n 2 -

and

P re .
zd)i(r, 9, ) = %7 — e )\m_ZI(ZPim)Jm(kZP) [m Sin(mqb)}}exp(—’i,mt)
(18c)

' The following dispersion relations, implied by the wave equation

(2), have been used in reaching both Equations 14 and Equations 18:

w

Lo (19a)
kl 1

and
P ‘ 19b
kz e, (19b)

If ey and 62 were assumed to be frequency-independent, then these rela-
tions would imply that both media would be nondispersive (i.e., the
-phase wvelocities w/kl and m/k2 would be constzant with respect to fre-
' quency). However,‘such an assumption does not simplify this develop—
ment, because all steady-state solutioms are of a single frequency,
owing to»the simple~harmonic sdurce,wﬁve of Equation 10. Therefore,

no assumptions are made. about the frequency dependence of cl and Cys

in order ‘to maintain the generality of this analysis. Note that
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frequency independence is assumed in Section 3.1 in accordance with

physical properties, in spite of the theoretical generality.

It is now appropriate to apply the boundary conditions at the
cylinder boundary (» = a). These conditions require continuity of
pressure (p) and of the normal (i.e., radial) component of particle

velocity (u ):

pw(r’ =a, ¢, t) =p (r=a, ¢, ¥ +2i(r =a, ¢, ) (20a)
and
Uy = a5 ¢, B) =, (=a, $, Dty E=a 9, t) (20b)

Expressions for E% and §m are obtained by substituting the
infinite-series descriptions of p and L given in Equations 10, 11
and 14, and equating coefficients of cos(m$) (since (20) must hold
true for all ¢). After some algebraic manipulations, the final results

for m = 0 are

Wy = E%[gl(kza),}gckzcz) - By (k@) ()] 1)
and

5y = - A_—Z[Jl(kza)JG(kla) - Ja(kza)Jl(klav) £ 7] (21b)
where

Ay = gi(kza)JG(kla) - Eo(kza)Ji(kla) -7, ' . (22)




Z
_ 2
Zr = —ZI (23)
The corresponding expressions for m > 0 are i
W =@5—l{zfz k) - £ (@) 1T (ky)
-m A —m+l i
4, 1
- Eﬁ(kza)[J (k a) - (& a)]} (24a)
agd
S=(2PL){[=J 1 ko@) = T (Rya) 10, ()
Zn A 2 m=1 Vg3 1 Ly
- Jﬁ(kza)[Jﬁ+l(kla) - Jﬁ(kla)] . ZP} (240
where
A = 1y (k@) 1K) 1, (@)
-E (kya) CAN (k 1@ - (k a}] ‘ (25)

2.2.2 Rigid cylinder. The rigid-cylinder problem is a special

case of the soft—cylinder problem (Section 2.2.1), for which the
inelastic cylinder is described by its elastiéity Kl approaching zero

(Kl + 0). As shown by the following equation (Morse and Ingard, 1968:

233), derived from an energy balance comstraint, an object is rigid

(i.e., has low Kl> is either (or both) its demnsity o, or its acoustic

velocity c,

1 is high;

_ 1 : . N
K1 =3 , (265
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Certainly, the latter case of high e &escribes the typical rigid

1

object. However, the complementary case of a very demse (high pl)
gbject is considered here, because it is mathematiééliy more conven-
ient. After all, the rigid-cylinder problem is analyzed éniy for the_
sake of checking the more general soft-cylinder problem, and not for
learning more about realistic rigid cylinders.

Now, for a rigid cylinder with finite cl and infinite pl (i.e.,

o, * =), it is readily seen from Equation 15a that the specific

acoustic impedance Z1 is also infinite {(i.e., Z, = «). Note, however,

1
that the wavenumber kl is unaffected as Py T as shown by (192), so
that the Bessel functions in the series solutions are well behaved.

Therefore, the interior particle velocity Q& -+ 0, in accordance with

Zl + o in (l4a) and (18a); this assumes E& remains bounded, as can be

easily shown. A nonzero pressure does, however, exist in the interior

kh

of a (very demse) rigid cylinder. (Note that for a rigid cylinder

with e, » 0, the wavenumber kX, + 0, resulting in "strange' behavior of

1 1
the Bessel functions and, even more importantly, requiring special
interpretation of the results.)

" Using the fact that Eb = 0 for the rigid—cylinder'case, the vari-
- ables describing the scattered Wave»ggs and'E%) can be determined
(without attention to Q’).‘ Note that p. and 7. are still given by

W - -7

(10), (Q4c), and (18c). Region 1 needs no further consideration,
because the subsequent analysis applies solely to region 2. Accord-
ingly, the subscript 2" is dropped from the warious constants and

variables pertaining to that region (i.e., this becomes a single-region

problem).
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The wave equation (8) and thus the general expressions for Py

(11b),

Upg (14b), and E¢s (18b) are unchanged (this is assumed earlier

in showing that.gw -~ 0). The boundary conditions (frdﬁf@quations 20)

T . are now
p,(r =a, ¢, ) =p.(r=a, ¢, ?) +p.(r=a, s, D) - @7
and
u {(r=a, ¢, ) =0=n (=a 9,8 +y, r=a ¢, 2 (27b)

¥

The second relation can be rewritten as

EZ‘S(P =a, ¢, t)

_uﬁ,{(r .= a, ¢, t) ) (28)

so that the scattered solution (u,_, and eventually p, and u, ) is
—rg _ -8
fully determined by the incident wave. The first relation (27a) is
not needed for present purposes, although it can be used to obtain
Ew (the condition g% = 0 is already known).
The weighting coefficients §ﬁ are obtained directly from this
equation, again by matching coefficients of cos(md), as dome in the

“soft-cylinder case. The solution is easily found to be

—PJl(ka)
5y = __ggzzay (29a)
“‘aﬁd
22 [ (k) = T (ka) ] |
M e L om0 ©(29b)

[ Ga) - E__ (k)]
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After some algebraic manipulation, it can be verified that this
solution matches that obtained by Morse and Ingard (1968:401). TFur—
 ‘thermore, the solution for the soft-cylinder probleﬁt(;hich this
. author has been unable to locate in any textbook) can be che;ked;in
fhe,limiting case of the rigid cylinder. Thus for oy > énd thus
Zl - =, then Zr + 0 according to Equation 23. Applying this condition
v to (21b) and (24b) and also to (22) and (25) of the soft-cylinder
':problem, substituting for A in §%, and replacing k2 by k, yield the
above expressions for §ﬁ, obtained for the rigid-cylinder problem.
This procedure also served as a computational check of the soft-
cylinder program "'SCL" (see Sectiom 3.2.1).
The task‘of solving only fér the scattered wave variables might
v.seemﬁirrelevant in thé light of the primary focus of this thesis on
the wave distribution within the cylinder. The motivation behind
solving the rigi&—cylinder problem lies in its usefulness for checking
the numerical results of the ﬁore general soft-cylinder case, as just
- mentiomed. The rigid-cylinder program "RCL" Qas itself checked on the
basis of its far-field radial intensity distribution; these procedures
are described in Section 3.2.1. TFor present purpose, it is sufficient

to mote that the time-averaged intensity wvector is given by

T> = % Relp' @] (30)

- where the brackets (<>) denote time-averaging and the superscript

-

asterisk (*) signifies the complex conjugate. Thus the {time-averaged)

radial component of the intensity of the scattered wave, i.e., the
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:variable of interest in the checkout process, is obtained as follows:

z te,t N '
<I,.” =% Relp () ) ] _— (31

2.2.3 Soft sphere. This problem (see Figure 2) bears a remark-
‘able similarity to that of the soft cylinder, so that its treatment
-is somewhat abbreviated, in order to aveid repetition. Much of the
notation is the same to emphasize the similarity, but it must be kept
in mind that the repeated symbols do not necessgrily represent exactly
‘:he same quantities.

In terms of spherical coordinates, the wave equations are

»%%(2’,3,111,3) _pcz(v . Z)
_o20(1) 5,2 (1 3 )
= e {:LZ) 7" %) T 7 ean e} 5o (Mg S1n 8
¢ | U
(1 } ¥
* {r sin 6) aw] (322)
~and _ '
Su(z,0,0,8) _ o
°3z = -
S [P S £ R | 2] : |
R Lfg 36 ¥ |7 sin 8) 3v | (32b)

R

‘,\ g £ ! 3 [ 3
3p(r,6,%) _ _pcz [{]‘J-——(pzu ) + t—-_i;—~j §%~(ue sin'e}] {33a)

r sin 8}
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—— — — —— /ﬂ
@ ’!\i -
e

| P x = rsinGcos¥
y g\ 9 y = rsinsiny
ncident plane wave 7228 Z= reosf

> —> .
z=a z

e O (arbitrarily)
z=rcos8

x= rsin 8

y=0

region | region2

Figure 2. TIllustration of soft-sphere problem geometry. (a) Three
dimensional drawing of sphere of radius a, showing spherical
coordinate system and incident plane wave (travelling in the
+% direction). (b) Cross section of sphere for ¢ = 0, show-
ing polar coordinate subsystem, wave components,‘and region
definitions.




and

o ot) = - | 7 B og gL (33b)
259, 57 36 L

where

u = ru, + eue : (34)

Note that the simplified spherical and cylindrical wave equatious,
{(33) and (6),_respectively, resemble each other much more than do the
- general forms of those equations, namely (32) and (5). In fact, equat-
ing 6 and ¢ makes (33b) and (6b) identical.

Again, these first-order coupled equations are combined into a

single second-order wave equatiomn:

It
0
<

g™

S H R e o

The general solution obtained using the method of separation—of-

variables again includes a sinusoidal time factor (as in_thg cylindri-
cal case), a radial factor in terms of spherical Bessel functions, and
an angular factor made uplgf Legendre polynomials. The corresponding

total solution is a linear combination of terms of the preceding form:

. . , R
p(r,0,%t) = { Z [émjm(kr) +-§Wym(kr)] Pm(cos e)}exp(rimt) (36}
=0 ’
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where jm and ym are spherical Bessel functions of the first and second
kind, respectively, and 3m(cos 8) is the Legendre polynominal, all of

order m. The remaining quantities are defined the same as for Equation

9. Note that Qm(cos 8) is an even function with respect to 9, as

required for a problem which exhibits independence with respect to .
Aé illustrated in Figure 2, regions 1 and 2 correspond to the
interior and exterior of the sphere, respectively. 'The incident plane
wave first given ig Equations 10 is now reoriented in the +2 direction
and reexpressed in terms of spherical coordinates and the basis func-

tions just described (Morse and Ingard, 1968:419):

p;(r,8,%) = P expli(kyz ~ wi)]

P exp{i(kzr-cos 8 — wi)]

s <o

1
i
:
‘2‘
Y
,1'
1‘
:
)
:
;
ﬁ

i Z—o'[ (m + l)Pim]jm(kzr)Pm(cos 9)}exp (-Zw?) ,

r>a {37)

where ¢ is the radius of the sphere, and again, the remaining quantities
assume the same definitioms as in the cylindrical case.
‘The pressure within the sphere ng} and the scattered component

, Qgs) are sought in the following forms:

gw(P,e,t) = Z E%jm(klr)Eﬁ(cos G)] exp{-Zwt), 0 <z =< g (38a)
m=0 !
and .
QS(?,E,ﬁ = [: z. S h‘(kzr)ﬁm(cos 6%} exp(~twt), 7 = a {38b)

m=0
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(Y
1]

= jm(kzr) + iym(kzr) : o (39)

is the spherical Hankel function of the first kind and of order m;
and E% and S are the complex weighting coefficients whose values are

I

.sought. The same reasoning applies to these particular choices of
'fspﬂe;ical Bessel functions, as with the corresponding cylindrical
Bessel functions, because Y becomes infinite as » »~ 0 (Morse and
Ingard, 1968:337).

In order to -obtain expressions for the velocity components (the

~radial component is again required for application of boundary condi-

tiomns), the wave equation for the velocity vector (33b) is rewritten

ou
_r oy = L} 3P _
ahd
U
_S - |11 3P .
at(r,e,t} = {pr} v . (40b)

‘Expressions for the radial compoments of the velocity vectors are
obtained. by substituting into (40a) the pressure functiomns.given in

+Equations 38a,b and 37, yielding

RN O o
Ly (75858) = 7 {mzo BTy L D ) =, (2]

X Pm(cos 6)}exp(—imt) . (41a)




. £ S
£y = & _-m 7,

5 | om + 1
x P_(cos 8)}exp (—Zwt) | (41b)
and"‘
. o = i {3 .m . . . e
o (59,8 = 7 ;0 @O + 1, Kor) = md - ()]
| X Pﬁ(cos 6)}exp(—imt) (41c)

“~where Zl and Z2 are defined in Equations 15. The expressions (41)
are reached through the use of the following relationship {(Morse and

Ingard, 1968:338) between spherical Bessel functioms:

d. } 1 . VN
=il @1 = —{Zm T l}t(m + 17 @ =g @] (62)

An expression for j_m(x) in terms of nonnegative orders is not required,

because the coefficient of J 1 in the term m = 0 is zero. Thus no

spherical counterpart of the cylindrical relation (17) is required, nor

:is separate handling of the term m = O needed. Again, the above state-
ments regarding épherical Bessel relations hold true for j replaced by
h (or y).

The following expressions for the tangential velocity components
are derived using Equation 40b:

gew(r,e,t) = ___ji_;; { z E%jm(klr){P%(cos 8)sin 6]}exp(—imt)

=0
(438)
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%S(r,e,t) = 7 f T {mzo g h (kyr) ’[Pr;z(gos 8)sin G]}exp(—iw‘/;)
(43b)
@,8,2) = 7o { I [2n+ 1)P"1G (k,e) P! (cos 8)si 'e]}
2 27 'm=0
x exp{(—iwt) . (43¢)

S{E%(cos 9)]
3{(cos 8)

sin 8

(cos 8)sin 6

- %iPm(cos 6)]

sin Bmgl (22 + l)Po(cos 8), m odd
L 2
1 even
m—1
={sin 6 ) (22 + 1)P,(cos 8), m even
z—idd
10 , m=0 (44)

I'=Cn-DE @+ L2 @] 45)

andl @ itial conditions .
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Also mote that the dispersion relationms (19) are used in reaching Egqua-

The boundary conditions of continuity of pressure and of the

Hormal velocity component, applied at the sphere boundary (» = a), are

p (= a,8,8) =p (r=a,8,t) +p;(r= a,8,%) (462)
_7/’_-'12&}(1?: .a,e,'f;) = ‘EZ’S(Z) = Cl,e,'l‘;) +E‘P’{:(P = asea—t) (46b)

Finally, expressioms for _!?_/m and —S—’m are obtained by the same method

uéé_d in Section 2.2.1 in reaching Equatioms. 21 and Equatioms 24.

The general solution for m = 0 is

. Jm
- [ (2m +éim }{Hm + DR G,@) - mhy_ (y@)1d, (ky0)

- B, R@ L+ D, Ry - mjm_-l(kzaﬂ} (472)

m
o [@m+ P . o L oNT14 (3
2 - __A_ }k[ (m + l)‘;] 41 (k2a> . 7?7(/ m_l.(f(.za/ }Jm(’{la)

m B

- jm(kza) [(m +. l>jm+1(kla) - m,jm_l(kla)] . ZP} | (&471)
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4= Lo+ D (@) - mh L (Ry@)5, (kg2

SR G+ DG @) - mf G - 2, (48)

rg‘ZPFis defined in (23).  These formilas can be simpiified for

ermm = 0 to the form

- ﬁiﬁﬁkzaﬁo(kz@ - 1y (ky@)d | (ky) ] (49a)
i P.. . i X

_*é—wl(kza)JO(kla) - Jok@d kya) ~ 2] : (49b)
7o

- Iy (k@) (kg @) = o (ky@)d, (k@) - 2, (50)

s.a special case of the soft sphere, for which -0, as

1
Since the same or similar relations still apply, ‘it follows
at for-e finite, p, ~ = and 7. + », and finally that ¥ - 0
A 1 1 1 =
>.a¢cording to Equatioms 4la and 43a). Also as before, the
T .pressure p,, remains nonzero for infinite 0

ain, use of the condition % = 0 permits determination of the

d

ered variables E%~aﬁd Eg from the incident variables B; and
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where the latter are givem by (37), (4lc), and (43c). ©Note that 2,

is not used in this determination. Since no further attention is paid

to region 1, the regional distinction is no longer ﬁétéssary, S0 that

the subscript "2" is again eliminated for comstants of that gégion. _ é
Because the wave equation (35) is still applicable, the expres—

sions for P, s 3 and L9 in (38b), (41b), and (43b) remain correct.

The general boundary condtioms (46) also still hold true, but the

second is augmented by the additiomal constraint 2; = 0, resulting in

Ew(f a,8,t) py(r a,&,t) + gi(r a,9,t) (51a)

and

(r =a,6,£) =0 =1u_(r=a,d,t) +u i(r = q,8,%) (51b)

As in the cylindrical case, the first condition is not used for obtain-

ing the scattered variables, although it is needed to calculate P, if

the latter is desired. The second is used by rewriting it as follows:

—u (¥ = a,8,t) {52)

=rs —r1

@
0
N
D
D
':t
n

The weighting coefficients-§m are found by the standard method of

substituting into (52) the series expressions for 7,

- and Upis and then

matching coefficients of the Legendre polynomials Eh(cos 8); the solu-
tion is

7f, (ka)

Sy =~ ‘Z;?%E? . (53a)

and -



[@m+ D2 + 17, k) = mj_ (ka)]
1 ) =1
[m+Dr ko) - m-Dr _(ka)] 7

m >0 (53b)

S =
-

It can be shown that the above solution matchesﬂgﬁat in Mprse and
Ingard (1968:419). As with the cylindrical cases, the rigid—séhere
problem is solved only for use in.ghecking the limiting case of the
soft-sphere problem, for which no textbook sclution has been found.
Proceeding as with the rigid cylinder, the above rigid-sphere solution
- for §ﬁ is obtained by applying the constraint Zr + 0 (from Py T and
Z, + =) to (49b) and (47b) and alsoc to (50) and (48) of the soft-sphere

1
problem, and then substituting for ém in §m' vThis procedure was
- repeated computationally to check the soft-sphere program "SSR" (see
‘Section 3.2.1).

Prior to its use in checking the soft-sphere program, the rigid-
‘sphere piogram "RSR" had to be checked. This step was again performed
l‘by means of the far-field scattered radial intensity. The time-
: averaged radial component of the scatteréd intensity follows from

Equation 30. It is identical to that in Equation 31 of the cylindrical

problem, and is repeated here for completeness:

)] ' (54)

2.2.5 Computational issues. As outlined in Table 1, four computer

" programs calculate the wave solutions derived in the four‘preceding
sections, and two additional plotting programs illustrate these solu-
tions (for the soft-object cases only) by means of isomagnitude and

“'isophase contours. Programs SCL and SSR compute separately the interior



Table 1

Computer Programs

Name v Function Performed

SCL Soft-cylinder problem: program calculates pressure,
particle velocity, and estimated power loss at points
on a two-dimensional polar grid, and passes output
to plotting programs IS0 and ISOLOS.

RCL . Rigid-cylinder problem: program calculates scattered
pressure, radial particle velocity, and radial inten-—
sity at a series of angular samples at a specified
distance from the cylinder, and plots radial intensity.

SSR Soft—-sphere problem: program calculates pressure,
particle velocity, and estimated power loss at points
on a two-dimensional polar grid, and passes output to
plotting programs IS0 and IS0L0S.

RSR Rigid-sphere problem: program calculates scattered
pressure, radial particle relocity, and radial inten-
sity at a series of angular samples at specified
distance from the sphere, and plots radial intensity.

IS0 Soft cylinder or soft sphere: program plots isomagni-
tude and/or isophase contours for pressure, and radial
and tangential particle velocity, using output Ifrom

" programs SCL or SSR.

ISOLOS . Soft cylinder or soft sphere: program plots isomagni-
rude curves for two estimates of heat loss, using out-
put from programs SCL or SSR.
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(i.e., within the object), scattered, and incident components of the
- various variables (pressure, radial velocity, tangential velocity,
"viscous™ heat loss and "absorptive” heat loss). Theséﬂsgparate
scattered and incident components are added to get the total éoiﬁtion
plotted by pfograms IS0 and ISOLOS (in conjunction with a plotting
-package "GCS"). For the value of a variable at the object boundary,
whefe the solutions for regions 1 and 2 coincide, the plotting programs
“arbitrarily use the values corresponding to region 1, i.e., the inter—
iﬁr of the object. The plotting programs construct contours ﬁsing
linear (i.e., two-point) interpolation.

The routines used to calculate the Bessel functions and Legendre
‘polyﬁominal aré summarized in Table 2. A more detailed description of

. subroutines NBESJ and RBESY is available in the Control Data Corp.

Math Science Library manual {(1973:3-97 to 3-102, 3-121 to 3-123). .The

‘functions Eﬁ’ Em are obtained from Jﬁ,Yﬁ and jm’ym’ according to
‘Equations 12 aqd'39, respectively. All subroutines use upward and/or
downward recursion to calculate their respective functions for a
single argument and a 'series of orders. A warning is appropriate
“:egarding parameter selection for the spherical programs SSR and RSR:
thé routine SBESJ incorrectly caiculates jm(klr)'and/or jm(kzr) if the
argument'is a multiple of T, i.é.; klr_ﬁ M or kzr = nw. This occur-
tence can be prevented by avoiding the exclusive use of "nice" numbers

(e.g., 1, 2.5) for both the acoustic velocities ¢, and cz and

1

‘the frequency f (see Sectiom 3.1). A good solution is tc multiply the

B

desired "nice"” frequency by 1.000 Ol to get a value which prevents the
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Table 2

Mathematical Function Subroutines

Function/
Polynomial Programs
Name Calculated Used in
RBESJ Jrn (x) SCL
RCL
NBESY : Ym () SCL
RCL
SBESJ jm (x) SSR
RSR
SBESN ' Y, (x) SSR
RSR
ALEG Pm (x) SSR

RSR
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problem without significantly altering the desired parameter value.

Source listings of the six programs, including the mathematical
function subroutines but'excluding the plotting packagéiéts, total
around SCOO ilines. Owing to their excessive iength, the’liStiﬁés are
not included in this thesis, but are available from Prof. O'Brien upon
request.

Most of the calculations made in the course of this thesis pertain
to the soft-object cases; the rigid-object problems are solved mainly
to provide a check for the former cnes (see Section 3.2.1). Thus the
subsequent comments in this section refer primarily to the soft-object
problems. In addition, the following statements are in general appli-
cable to both the cylindrical and spherical cases, the similarity
between which is pointed out in Section 2.2.3. The cylindrical nota=-
tion is arbitrarily used, but the spherical notation is easily obtained
by replacing ¢ with 8, and x with 2.

All four calculations programs compute the steady-state complex
ampiitudes of the different wave variablés, namely E%s Eé’ g%, u!

—r’

u! ul., u! ul
—rs’ —ri’ —pw’ —¢s

s and Zéi' These variables vary with spatial posi-
tion (r,$) but are time-independent. Examination of Equations 10, léec,
18c, 2la,b, and 24a,b in the soft-cylinder case; and of Equations 37,

- &1e, 43c, 49a,6, and 47a,b in the soft-sphere case, shows that all
preésure and velocity variables are linearly proportional to the
amplitudebP of the incident pressure wave; so that the relative dis-

tributions are independent of P. Therefore, P is set to 1 in 2all

calculations and plots, but the option to use a different value is




36

retained for flexibility in adapting to experimental conditions
specified in the future.

In Sections 2.2.1 and 2.2.3, the expressions for &1i three com~
ponents of pressure and velocity are stated in terms of cyliﬁdfic i
and spherical Bessel functioms. Tﬁese functions are counsidered to be
"appropriate“ for describing the solution.because the series exprés—
sion for a given variable can be truncated at a finite term m = ¥,
instead of m +~ =, with the remaining finite series-sum still a good
approximation to the exact solution. This truncation approximation
is essential for numerical computation using a series expression. Its
~validity requires that the neglected higher-order terms be of much
lower magnitude than the retained low-order terms.

The truncation approéch is used to calculate approximate values
 kfor the interior andvscattered components of pressure and velocity.
However, ﬁhe incident component can be calculated Yexactly™ using.the
- original "closed-form" expression in (10), which is restated now in

steady-state amplitude form:

2%(?,@) =P exp{kzr cos ¢) - (55)

'The corresponding expressions for the radial and tangential velocity

" components are obtained by ap?lication of Equatioms 13 for the cylin-

drical case, or, equivalently (for & replaced with ¢), Equatiomns 40

for the spherical case, yielding

5 .y _ P cos ¢ . o ’ =
zri(f’¢’t) == eXp{t(&Zf cos ¢ ~ wt)] (56a)

2
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and
2 P sin ¢ . .
zm-(r,cb,o) = - T exp[7(kyr cos ¢ - wt)] (56b)
or, in steady-state amplitude form:

' P cos ¢ .

u, Ar,0) = ~—==—— exp(ik.r cos 3) (57a)

-1 22 2

and

s - _ P sin ¢ . . -
g¢i(f,¢) ‘ Zz exp(zxzf cos ¢) (57b)

discussed in detail, it is use-

topic of truncation is

Before the
up the terms in the series

the factors which make
the weighting coefficients, the Bessel

ful to consider
Owing to the

expressions to be truncated:
functions or radial factors, and the angular factors.
close resemblance between the cylindrical and spherical problems, the

corresponding factors of each case behave similarly with regard to
First note that the magnitudes of angular

order {(m) and argument.
it is well known, for the cylindrical case, that

factors are bounded:

lcosme)| = 1
and that
Im sin(m¢) | < m

for 0 = ¢ = 27, and m = 0,1,2,....
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kewise, for the spherical case, it seems that the Legendre polynomial

d its derivative) is bounded in a similar manner, although this pro-

Tty has been verified only experimentally by numeroﬁs’samples,

her‘than mathematically. Thus it.is proposed that

-F!Pm(cos 8)1 =1

.;aﬁ%(COS )} .
B Y-— m

,"0'5 8 =27, and m = 0,1,2,....

alues:. for a given argument (x = k'la, klr, kza, kzr, etc.), all
sel functions (namely, Jﬁ, jm’ Yﬁ, Yo gﬁ, @m) take on values of
ich the order of magnitude is near unity, for a range m = 0,1,2,...,

_(Nsi’ is not intended to represent a sharply defipned transitiom).

téadily (exponentially) for increasing orders (m = Néig + 1,

Sig,+52"‘,), whereas Yﬁ and Y (Bessel functions of the second kind)

icrease with m in a complementary fashion. The Hankel functions @ﬁ

d k. follow the same pattern as Ym and'ym, since the latter functions

f

+

prise- the dominant terms of the former, for higher orders. For all’

se functioms, the low-order '"plateau" range extends further (i.e.,

gfis*larger), and the rate of increase with order m for Jﬁ and jm

<

s

o~

d of decrease for ¥ , ¥ , H and A _, declines, as the argument x
o o - m’> “m’> —m —m

(3

nereases.
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Based on this description of Bessel functions, the behavior of

he weighting coefficients Eﬁ and.§ﬁ can be inferred from Equations
4a,b and 25 (cylindrical), or from the similar equatioﬁé 147a,b)‘and
48). With similar terms in its numerator and denominator, E% r;ﬁains
ai:ly constant (i.e., near unity) for a wide range of orders and
rguments. In contrast, §% decreases doubly fast with increasing m,
pprqximately according to Jﬁ/fﬁ. This behavior of the factors of the
erms of the séries solutions determines the appropriate truncation
oint.

That the terms in the series solutions eventually "taper off" for
flgher orders follows directly from the previous discussion. First,

he expressions for variables within the objects are considered (see
E@uations-lla, l4a, and 18a for the cylindrical case, or else Equatioms
Sa, 4la, and 43a for the spherical case): the angular factors are
:undéd as described, and E% is fairly comnstant for increasing m, while
m(klf) decreases, so that the higher-order terms decrease according to
0 with "modulation” by the angular factors. The other case‘concerns
1he scattered variables (see the equations listed above, except refer
o parts (b) insﬁead of (a)): again the angular factors are bounded,
_héreas tﬁe coefficient gm-decreases with increaéing m according to
;ﬁ/f&, gnd-the radial factor gﬁ(kzr) increases according»to Yﬁ, with
hp.overéll decrease of fhe higher—order terms in the general pattern
bf15ﬁ_with éngular.modglation. The breakpoint for tapering off and

e rate of decline are, of course, dependent on the relative values

bf~r and a, but the general trend with m is as just described.
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The terms of the series expressions (for higher orders) can be
appropriately viewed as made up of a decreasing envelope (the product
of the weighting coefficient and the radial (Bessel) fécgqr) modulated
‘fby the bounded angular factor. Truncation of the series must 5; based
on the envelope, rather than on the entire modulated produét.

Since the envelope is dépendent only on » (and m), truncation

occurs at the same-order term for all values of ¢, for a specified r.

The reference point is selected to be the term m = 1, whose value is
-generally of the same order of magnitude as the series—sum itself.
‘=The term m = O cannot be used for all variables, because it is zero

for tangential velocity. The truncation criterion is the simultaneous
o

satisfaction of

Icurrent term m, except for angular factorl
|reference term 1, except for angular factor|

for all three variables Ef,_g;, and gé, for a single wave component
(namely, interior or scattered). The quantity 6 is currently set to

the value 10-6.

For both the cylindrical and spherical cases, the largest number
of terms for the solution in either regiom is required at the boundary

r»=aq, For § = 10_6, this quantity approximately follows the rule:

ﬁaximum'number of terms = 11 + 1.5 - kla, where 1 = kla = 40 rad, and

T A K
r{l .r(2.

‘A1l three wave components are computed at values on a polar grid.

In region l_(O'S ¥ =a, 0< ¢ < 21), values are obtained for the inter—

ior variables'(g;z E;Q: géw) at the set of.N%1 x Ng points {(z, ¢), such
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hat

r = A;nl, 2Az=1, cee (er - l)Arl, NPlAr’l -
nd
b =0, Ad, 2A¢, ..., (N¢ = Dag
where
a
Ap. = (58a)
1 A?1'31
nd
Ag = N—ﬂl (59
¢

ables (p!, u;S, g%s, Q%, g;i, géi) at the following set of o X N¢
p01n£s (r, ¢): |
z=—a,a+Ar2,a+2Ar2, cee a-}-(Z‘JPZ—l)ArZ
and '
¢ =0, Ad, 20d, ... , (Né - 1)A¢
where
Ar, = Ar | | | (58b)

]
o

-

and A¢ is defined above. The two separate but equal radial discretiza-

tion steps Arl and Arz are employed in the computer programs for the
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sake of future flexibility.
Note that no values are computed in region 1 at the center (r = 0).

This situation results from the difficulty of using the series expres-—

sions at that point, rather than because pressure and particle veloeity ;
physically take on unusual values at the center point. However, the
tangential component of particle velocity does in fact "blow up" at
that point, but this result owes to the meaninglessness of the tangen-—
tial direction at the center—-only the radial direction is meaningful
there. The computational difficulties result from rhe Bessel routines,
which cannot accept a zero argument for Jﬁ(klr) and jm(klr), although
these funétions are finite at x = O (note that Yﬁ(klr) and ym(klf),
which "blow up" for » - 0, are not even included in the interior series
expressions.) An additional problem might be the multivalued (with
respect to ¢) mature of the solution for Qw(w $) as r» »~ 0. The plot—
ting programs attempt Lo circumvent the lack of calculated values at
the center, by averaging all values of the variable to be plotted
along the innermost circle (» = Afl),‘to estimate the actuzl value.

A final point concerns the savings in computation possible by
takiég.advantage of the symmetry of the problem about tﬁe 1line ¢ = 0,
or the xz-axis. .The following‘relationshiés hold true for all three

wave components, as a result of this symmetry:

(60z2)

p'(r,¢) =p'lx, 27 - b)

(r, 2w = ¢) (60b)

|
A
)

_zr,(z’,«b)

and
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—gé(r, 2T - ) _ (60c)

S5
~N
®
o
g

1

Thus it is only necessary to calculate variables valggsdfor ¢ in the
range 0 = ¢ = 7; from these calculations, the remaining values can be
easily obtained using Equations 60. This scheme is implementéd for
the soft—object piograms SCL and SSR. 1In order to plot in the entire
plane instead of merely in the calculated half-plane, programs ISO and
ISOLOS comstruct the solutions for m < ¢ < 27 from those for 0 = ¢ = w.
However, this approach ié not used in the rigid-object programs RCL
and RSR, because the savings in computation timé and storage space

scarcely justifies the extra overhead.

2.3 Calculation of Wave Distributions—Numerical Approach

.Only for the soff—cylinder problem (see Section 2.2.1) was an
attempt made to f£ind a solution numerically. The attempt was based on
a FORTRANAOriented diffe?ential—equations simulation package named
"FORSﬁM“‘(Cafver et al., 1978). The soft-cylinder problem here is
identical with that outlined in the description of the analytical solu-

~tion: the incideént wave variables (g%, Z}i’ géi) represent a known

source wave and the interior and scattered wave variables (Q%, zfﬂ,

géw; Eé"z;s’ gés) are sought as the solutioms of the wave equations

{6) which satisfy the boundary conditions  (20).
As mentioned in Section 1.3, one advantage of the numerical
method is that arbitrary incident waves, more. closely resembling

~experimental conditions (e.g., a focused beém}, can be employed. Im

contrast, the analytical approach is restricted to waves which can be
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described using series expressions of the form (11), for which "reason—
‘able™ expressions for the coefficients are available, as with the plane
wave of Equation 10.

The three wave components are again represented gf ;amples on a
polar grid simplified to a half-plane by means of symmetry, as described-
in Section 2.2.5 for the analytical approach. The incident wave is cal-
culated amalytically as before, while the interior and scattered compon-
ents are obtained numerically.

The general approach suggested for use in conjunction with FORSTM

u, . and p

' involves guessing arbitrary initial conditions for pw, urv, o1

Ungs u¢s and integrating these variables (starting at ¢ = 0) according
to the time derivatives given in Equations 6a and 13a,b (for the
cylindrical case only; for the spherical case, Equations 33a and 40a,b
would be used), until the steady state is (approximately) achieved. For
such an outcome to result, the transients excited by the arbitrary
initial conﬁitions must decay nearly to zero, leaving only the steady
State, as determined by the forcing function. Thus, in a sense, time
serves as a dummy varisble which oversees iteration until the steady-
state complex amplitudes are finally obtained.

However, this method encounters difficulty in its application to
wave equatioms, which are included in the largervclass of "hyperbolic"
‘differential equations. Im such problems, some transients tend to be
increasing exponentials, causing the solution to "blow up,” instead of
decaying to zero or approaching the steady state. This difficulty

proved sigmificant and apparently -insurmountable, so that this partic-—

ular approach is considered to be inappropriate for numerical solution
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of wave problems of the sort described in Sections 2.2. This topic is
discussed in detail later in this section; for the present, attention

is focused on the techniques used in this (unsuccessfﬁf} attempt, some
of which are useful in their own right, while others need iﬁp;ovement

or else should be avoided altogether.

Note that the numerical variables are real, time-varying. However,
complex steady-state amplitudes (say, 2;) can be determined from the
:'time-varying quantities (such as pw) as follows: Ig&] is obtained as

the maximum of {pw] during one period (T = 1/f) in the steady state,
andcj}%; is then cos_l(pw/{géf), where;z}is (arbitrarily) evaluated at
_the beginning of a cycle. »

.For integration in time, the fourth-order Runge-Kutta method was
~selected from among the offerings iﬁ FORSIM. This technique was chosen
because of its low storage requirements, in spite of its relative slow-
ness in integration. Temporal step size varies as integration proceeds
énd is automatically determined by the package, based on a fifth-order
Runge—-Kutta error estimate.

The process of temporal integration is based on the time deriva-
tives, as calculated using the aforementioned wave equations (written
in a form similar-tovstate eéuations}_ These calculations in turn
vrequirg knowledge of spatial derivatives at each instant of time. The
. derivatives are approximated using "Lagrange interpolation" among sur-
rounding~pointés the number of which is termed the “coupling order”
‘(NCUP).Z This quantity is normally odd and is variable for éach

spatial direction, but both quantities are set to the maximum value of
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7, to reduce errors which excite unstable transients. This general
technique is referred to as the "method of lines,” because it separates
~ the partial differential wave equations into a set of ;féinary differ-
ential equatioms which are‘integréted in time (thus, the "lines;) and
~coupled in space. It should be noted that Lagrange interpolation pro~-
duces serious errors in approximating derivatives near discontinuities,
as might result from poorly chosen initial conditionms.

To compute a derivative of a function at a given sample point and
with respect to a given direction, one of two different forms of
- Lagrange interpolation is automatically selected: 'central® or "skewed"
differencing. The former scheme uses function values at the given
sample point and at the (NCUP/2 - 1) points on each side (along the
given direction) of the central sample—if those points exist within
the bounded region. Otherwise, skewed differencing uses the first NCUP
:‘points, beginning at the (obstructing) boundary. Central differencing
is more_éccuratg, but obviously can only be used at points sufficiently
far (i.e., internal) from boundaries.

In order for a steady-state solution to be reached after starting
from arbitfary-initial conditions,’the transients must all decay, as
already mentioned, and then the system must reméin in the steady state.
 _It is expected that the entire integfation proéess would span at least
-several wéve periods (0 £ £ = nT), depending on the rate of decay.
irHowever; for testing purposes, a simpler‘prgblem.was attempted which
"requires only one period of integration: the system is initialized

“already in the steady state, using the known analytical solution, so
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’

that the task is to integrate through one period (0 = ¢ = T), and to
;try to match the final state as closely as possibie to the initial
(steady) state. This goal was never reached-—the best that was
achieved was integration through a half—period,‘at which poinf iﬁcreas—
-ing errors bégin to swamp the solution. Merely this simplified job
~requires approximately 200 CPU secondé (i.e., actual run time) on a

- Cyber 175,; so that even if it had been successful, the overall problem
“entailing multiple-period integration would probably require an unfea-
sibly large~amOUnﬁ of computation time.

At any rate, this method-of-lines approach seems inefficient for
solving the current problem. Part of this inefficiency appears to be

a result of the introduction of time as a third, dummy variable, for
sblving for the steady-state complex amplitudes, which are only spa-
tially dependent. = Certainly, some additional dummy wvariable is needed
to coordinate iteration toward a soluticn. However, time seems to be

a relatively inefficient choice, as shown by the tremendous difference
Eetween the amount of computation‘time required for numerical solution
and .that for analytical solution-—a factor of about 103.

The sample density ofbthe polar grid is no longer decided merely
tq achieve a sufficient fineness in plots of solutions, as done-in the
gﬁélytiﬁal case, but is now also én impértant factor ip minimizing com-

putational errors. Certainly, it is desirable to keep the grid demnsity

1 o . . - B )

This figure is slightly exaggerated, because small but Increasing
rrors cause integration step sizes to be reduced automatically,
.thereby requiring extra computation time.
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as small as possible, in order to minimize storage requirements and
computation time: each additional point on the grid represents another
equation, for which spatial derivatives must be calculafed and integra—
tion performed.

On the other hand, additiomal factors establish minimums on the
.number of sample points. In the first place, a sufficient nﬁﬁber of
‘points is required to represent thé spatial variation of the wave.
Based om examples in the FORSIM manual, a good rule of thumb is to use
(ét least) kx (in radians) as the number of sample points in a distance

~x. Since

this rule is seen to be equivalent to placing 27 ~ 6 points per wave-
a points
14 P

= kla. Siﬁée

'1ength. Applying this rule to region 1, it is seen that %k
are suggested along the radial distance a, or Nfl

'Arz =.AP1'(see Equation 58b), the latter determiﬁatipn of Nfl specifies
the radial point density. in region 2 also; this means of specification
is valid‘as long as kl msz. Note that Nfz-has no effect on the radial
point dénsitf in region 2, but instead determines the radizl extent of
- the regioﬁ,

| The point density along fhe angular direction is a somewhat more
 difficultAissue, bécause the angular discretization distance rAd varies
ZWitﬁ r,‘for a.constant A¢; the worst case occurs at the-outer*boundary
f‘bf region 2. Tt cam Be easily shown from the polar grid specification

~dn Section 2.2.5 that the radial distance to that boun&ary is’
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. +N. -1)
P = 2 er | a (61)
rl J

the -1 is required because the point » = g is com?on to both regioms.
' N, o+ . -1

Thus, the circumference along that boundary is 27 r2 N'ﬁl a,
- rl
. so that ’
N, +8 . - 1}
N =k, » 2|22 sl a
G 2 Jij J
rl

~points are needed in the angular direction. For a relatively small

eylinder such that kla-w 1 (see discussion on parameter values in

Section 3.1) and for Nfl N}z, the previous reasoning suggests

Nfi = Nfz =1 or 2, and N@ = 12. However, much larger values are
Aaétually used, as a result of the following additional constraints.

| A second minimum on the numbers of points owes to the coupling
order: - for spatial interpolation using 7 points, at least that many
pbints-must_be contained in each dimension of the grid, for each region.
}Ihis cénsideration gave rise to the choice ¥ . = N _ = 10, where a few

rl r2

‘extra points are included to decrease the relative number of points for

‘which skewed differencing is emplioyed. Aléo,,the choice of N¢ = 20 was
7iﬁitiall§ made baéed on this reasoning, resulting in 11 points in the
¥Ealf—plane actually used. waever,'this.latter choice proved insuf-
ficient»to provide a good spatial description of U, and u¢, which vary
tﬁith anglel@Aéuéh that‘ur has meximum values near the x—gxis and is

6"

near zero along the y—axis, and vice versa for u Note that this’
angular variation is a result of the directionality of the incident




wave, rather tham its wavelength, as was the case with the initial
consideration based on kla and kza. The value N¢ = 60 is the selec-

tion which finally solved this problem.

In contrast with the analytical approach, the wave variablé; can
e evaluated numerically at the center (r = 0). The use of the center
§ a sample point is motivated by the resulting increased accuracy
étainable for radial derivatives. However, the wave equations must

e reformulated in terms of Cartesian coordinates, because u¢ is singu-

ar at the center (see Sectiom 2.2.5). Thus at » = 0, the wave equa-

ions are
-
W ey o L 2= —
St(r 0,%) plcl (v uw)
: u U |
- 2\ ww o, _yw
T 7P1% e T oy (62a)
and
du
0. —2(r = 0,t) = —Vp
CPreE e TV w
Bpw Aa_w :
= -3 62b
Sz W ( )
Heré
— :"\ ~ . ' . 6
U, =@+ Py (63)
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= - (64a)
Tt {_)l Ix
and
oL 1 apw :
-2 - -{~} = (64b)
2 I8} <274

Now, Equations 62a and 64a,b are written in the appropriate form for

obtaining Py Uy and uyw by means of the method of lines. However,

'by.the symmetry of the problem, uyw(r = 0,t) = 0, so that (64b) need

not be integrated. Note that this condition does not imply that

| auyw/ay = 0 in (62a).

The remaining question is the determination of Cartesian spatial

:derivatives from variables on a polar grid. Now, 3p/dx and du_/3x are

‘obtained by Lagrange differencing of p and u , respectively, for ¢ = 0,

which is the ®¥-axis. Similarly, 3p/3y and Suy/ay are evaluated as

. above, except using ¢ = 7/2, which corresponds to the y-axis. So that

the'latter step can always be performed, Né is required to be a multiple
of 4; therefore, samples of the needed variables are evaluated for

¢ = n/2.  The complementary use of the center wave variables in the
evaluation of radial derivatives for points near the center remains to

be considered.

Each of the two spatial regions, temporarily ignoring the center

point, has four boundaries, two radial and two angular: £or regiomn 1,

the "central® boundary at r = Arl, the "object™ boundary at » = a, and

‘the two "side' boundaries at ¢ = 0 and ¢ = 7; and for regiom 2, again
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the object boundary and two side boundaries, and also the outer bound-
ary » = R. Of all these boundaries, only the object boundary is a
"true" boundary to which boundary conditioms are applie&, Whilg.the
others are artificial--the results of the inevitable finite radial
extent of sample points and of the reductiom of computation to the
region 0 = ¢ = 7w through the use of sﬁmmetry about the x—-axis. The

. appearance of artificial boundaries is undesirable, because the less
accurate skewed differencing must be used instead of central differ-
encing. BEven with the introduction of artificial boundary conditicms
{the application of bounda;y conditions still remains to be explained),
considerable distortion is always the outcome.

The only good solution is to "virtually" eliminate artificial
boundaries wherever possible; that is, to use the symmetry conditions
(and the center point) to make the artificial boundaries (which the
former created) "invisible" to thé differencing routines. This step
is feasible at all artificial boundaries (namely, central and side
_boundaries) except the outer boundary. The lack of a boundary-
elimination technique for the latter case results in the largest
errors being created there, exciting unstable solutions which even-
tually'swampAout‘the‘éteady—State response. Discussion of this topic
is»temporarily‘postponéd, With‘atteﬁtion being turned back to the cen—
tral and side boundaries. -As fegards fhe latter, both regions are
extended, by’as‘many points as necessary for the givén‘coupliﬁg 6rder,

-

- past ¢ = 0 and ¢ = 7, so that central differencing can be performed

- for angular derivatives at all points in the range 0 < ¢ = w. Thus
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or-angular coupling of order 7, an extension of 3 points is needed at

ieach boundary. The extension is made using the symmetry relations

imilar to those of Equations 60.
An alternmative approach, as previously mentioned, is to use the
following boundary conditions, which are directly the result of sym—

metry, at both ¢ = 0 and ¢ = w:

ap :
Dol w o
ey vO , (65a) |
7 .
rw - -
R (65b)
| d
%;
Uy = 0 (65¢)

In"fact, (65b) is not required because no angular derivatives of urw

appear in the wave equations {6). These conditions merit comnsideration

ecause they require much less computational overhead than the boundary-

extension approach; but they are not used, for the sake of computational

accuracy, as already stated. The reason for their inaccuracy is prob-

ably that they are necessary but no£~suffici§nt conditions to comstrain f
”ﬁé broblem to be syﬁmetrical.

Elimination of the centrai boundary at » = Arl involves an exten-
sion of the nominal region 1 through the center CPv=’0).and effectively

into the region » < .0, so that central differencing Can'be’used for

radial derivatives near and at the center. Again, an extension of 3
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points (beyond the center) is required for radial coupling of order 7.
Computation of the radial derivatives (only needed for P, and urw) along

- an angle ¢ includes the use of the following values at fhé center:
p,(r =0)
and

urw(r =v0,¢).= umw(r = 0)cos ¢ + uyw(f = O)sin ¢

where the evaluation of pw, Uy andZﬁﬂaat r = 0 has been considered
previously. The following expressions for these variables for » < 0

make use of the symmetry relations'(60) used for the side boundaries:

p,r:9) =p (-r, ¢ + m)

=p, -z, T~ ¢) . (66a)
--and
Uy @s9) = -, (-7, ¢ + )
= -u, (-7, T = $) (66b)

No alternative boundary conditions are known for handling the

rtificial central boundary, as was the case with the side boundaries.

’Hoﬁever, it should be noted that the artificial condition

35
) =0 - ‘ (67)
ar : : :




is not valid at r = 0, as suggested in the FORSIM manual (Carver et al.,
1978:124) ; instead, a discontinﬁity in Bpw/BP at the center is quite
plausible, because the quantity varies with the angle é{ As concerns
the outer boundary at r = F, neither a boundary extension nor.aﬁ.arti-
ficial boundary condition is known which can eliminate the artificial
boundary. The variables at the boundary are thus said to "float."

In the solution of partial differential equatioms, the‘number of
béundary conditiéns for a given variable and coordinate directioﬁ is

. general equal to the highest o:der of derivatives of that variable

. with respect to that coordinate {(Carver et al., 1978:46). 1In particular,
+for this first-order wave problem, this rule implies that ome radial
{boundary condition is ;equired for p, and urw in region 1, and the same
;fbr ps and urs in region 2. Of course, the angular boundary condition

and ués cannot be applied, because no phys-—

5sgggested fer P,,» u¢w, Py

iﬁal boundarybexists; this is a walid exception to’thg general rule
"just stated.

The application of boundary conditions in a numerical problem
“involves setting the boundary sample of the appropriate variable to a
}value Whichvsatisfies.the given boundary condition. For instance, to

1impose the condition

ff(C) is set to the value which causes the Lagrange approximation of

-

3f/%x at = = C to equal X.
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Now, since the single sample value at z given boundary provides
only one degree of freedom, only ome independent boundary constraint
can be satisfied at that boundary. This situation placés>obviops
limits on the total number of boundary conditions which can be applied
numerically and may conflict with the actual boundary specificatioms.
However, no conflict exists for the current wave problem: at the

(radial) object boundary (» = @) the four samples of P, U and

? Pg?
Upng provide four degrees of freedom, which must satisfy four conditiomns.
The first two are the boundary conditions (20), discussed in Section
2.2.1, and the other two result‘from the application of the wave rela-
tionship (13a) to the interior and scattered wave components.

For numerical purposes, it is best to restate Equations 20 solely
in terms of pressure, and fhen to solve for the boundary values of P,
and Dg- The samples of urw'and Us at r = ¢ are then implicitiy deter-

-mined, by means of the integration process. Now,. (20a) is already in
terms of pressure, and (20b) can be converted to this form by use of

(13a); thus the set of numerical boundary conditions at » = ¢ is

+ p. ‘ (68a)

w - -y
3»  8r = ar (68b)

(02} 3p b,

It must be. emphasized that the derivatives in (68b) are represented by
Lagrange polynomials, so that the process of solving for pw(f = ¢) and

ps(r = q) from Equations 68 is an algebrazic process.
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This ﬁethod for applying boundary conditions encountered one
"signific‘nt difficulty: if the density ratio (pz/pl) is near unity,
the scattered wave component is much smaller than thé>o£her two com—
~‘ponents, because less reflection occurs. Yet, the errors in computing
the boundary values of ps and p,, are similar in value, resulting in a
much larger relative error for ps. As before, this error can grow and
eventually distort P, also. The only known cure for this problem is
to increase the mismatch of the densities-p1 and 0ne

It is suggested in the FORSIM manual that the time derivatives of
the variables being integrated should be held to zero at boundary
points iavolved in boundary conditioms, so that the integration process

does not upset the imposed constraints. However, this rule should only

‘be followed for constant boundary conditioms, such as

fx) o=c = 0

 For dymamic conditions, as in'Eéuations 68, better accuracy is achieved
by letting the time derivatives reflect the changing staté of the bound-
ary.

Throughbut this discussion, the problem of unstable solutions is
vmegtioned. Two'attempted remedies ére now discussed. ' The first, sug-
gested in the FORSIM manual,‘is called "upwind differencing” (Carver
“et al., 1978:125). The idea»is that an error wave propagating in the
'.opposite direction as the primary solution can be reduced By‘using,
“dn the'differenciné process for estimating derivatives, more samples

in the upwind direction of the primary solution than in the downwind
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direction of the error wave. This technique seems to have an appli-
cation in reducing the (inward-moving) error component of the (outward
moving) scattered wave, which arises at the outer boﬁhdéry (r = R).
However, the cause and proposed solution are one—in—the—same:wthe.error
wave arises from skewed differencing at the outer boundary, yet the
" proposed solution is to use skewed differencing (in the same direction
as at the boundary) throughout the region. As might be expected, the
 upwind—differencing approach did, in fact, deteriorate the solution
‘more rapidiy.

The other possible remedy, also discussed in the manual (Carver
et al., 1978:125), is "artificial dissipation.” Essentially, it is pro-
_posed that the system be stabilized by adding an artificial loss factor,
~much like the commonly used technique of increasing the damping factor
""of a circuit in order to improve its stability. TIn effect, accuracy is
 traded fbr_stability. For this wave problem, the dissipative factor is
viscosity; it is implemented By altering the original lossless wave
?equations. This implementation is based on a development bvainsler
and Frey (1962:218-221). The wave equation for pressure (la) is

modified to the form

B olT - wen [63‘;’—} (692)
[ ab

'Where n is bulk viscosity (see Sectiom 2.4) and the second term on the

‘right-hand side is the '"viscous-loss" term. The wave equation for

-

VelocityA(lb) is unaltered:




Except for the viscous-loss term, all terms in the above equations are
given in cylindrical coordinates in Equations 6. Substitution of (69b)

~into the viscous-loss term vields (in cylindrical coordinates)

7 . Su| _ _[n].2
”{V BtJ‘ MVP
2 \ 2
_ _B} [.a_%+ (%J %;% ;2 3_21 (70a)
3y r 3¢

A similar expression in terms of Cartesian coordinates is required for

use at the center sample (» 0); it is obtained by substitution of

(62b) into the viscous-loss term, giving

— 2 2
UL n 3p 3 p
'”l(v ) ag} ) _{OLM' 7t ;} (700)
1V N3z Yy

In fact, artificial dissipation was only used in region 2, in an

attempt to reduce the error compoﬁent of the scattered wave at the

outer boundary. For'nl =0 and n, = 1 mg/mm - us, which is about lO3
':larger than fbr tissue, stability is improved but still.not achieved,

~while the accuracy of the solution is seriously altered by the high

attenvation. Thus it is concluded that artifical dissipation, too,

'is not an adequate femedy for the instability inherent in this wave
‘problem.

Two additional problems encountered deserve brief mention. First,
“even using relatively low-storage Runge-Kutta integration;'the FORSIM

computer runs required large total amounts of storage, including work

space for the Runge-Kutta routines, arrays for the wave variables



being integrated and their‘temporal and spatial derivatives, and a
collection of miscellaneous arrays. Some space was counserved by shar-
ing storage for temporary arrays not needed simultaneéﬁsiy, 5y means

of the FORTRAN "EQUIVALENCE" statement. This techniqﬁe could éé used
-much more extensively if necessary.

And finally, pumerous "bugs'" were discovered in thefrecently

. written two-dimensional routines in FORSIM, although the older routines
were relatively error-free; These difficulties were overcome by virtue
. of the availability of the source code fo: FORSIM, so that the errors
could be located and the use of the erroneocus features altered or

avoided.

2.4 Estimation of Loss

Recall'that the distribution of wave energy absorbed by the tissue
is'desired as an indication of possible hot spots. This infofmation is
to be estimated using the pressure and velocity distributions obtained
by the methods described in Sections 2.2.

'T0jproceed, it is helpful to make two approximatiomns: first, that
the material parameters {(acoustic vélocity,.density, etc.) are constant
over the range of fempératures experienged by the irradiated tissue,
»égd second, -that the wave &istributién (préssure and particle velocity)
:is not éltered by the coﬁVersioﬁ of wave enérgy to ﬁeat in the tissue.
Tfhe former approximation ié valid for relatively small temperature
‘variations,,aﬁd ﬁﬁe latter requires that the wave energy'aﬁsonbed by

\

the tissue be small compared with the total energy of the wave. Use
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of the lossless wave distribution as that for slightly lossy tissue is
termed a zeroth—order approximation, and the estimated heat generation
 is therefore a first-order approximation. It should beiﬁdfed that the
restriction to a lossless wave distribution is required omnly fofA
simplicity in amalytical work: the artificial-dissipation technique
is emﬁloyed in numerical work (discussed in Section 2.3) in an attempt
to compute an actual lossy wave distribution. However, this viscous-
loss mechanism is introduced in an attempt to stabliize the solution
outside the object, rather tham to permit more accurate estimates of
energy loss within the object.

At least fwo mechanisms of energy absorption are known for soft
(fluid-like) tissues: viscosity and heat éonduction. Viscosity effec-—
tively creates hysteresis in the pressure-particle velocity relation-

"ship, resulting in loss because these quantities are forced out of

phase synchronization. Heat ccndﬁction manifests itself as a loss-—
producing mechanism by héat flowing from the warmer, h%gher—pressure
half of the‘%ave to the cooler, lower—pregsure region, Zirectly reducing
the energy of the wave. The case of no heat flow, called "adiabatic,”
results in no énergy‘loss by the wave, whereas infinite heat conduction

'

produces ‘an isothermal situation, in which the wave is highly attenuated.

In tissues, viscous losses are much greater tham those owing to heat
conduction, so that the former mechanism is considered to be the sole
- source of heating, and the wave is assumed to propagate adiabatically.

- This approximation is best for lower (sub-GHz) frequencies (Morse and

- Ingard, 1968:230).
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A theoretical analysis of the viscous-loss problem is presented
by Morse and Ingard (1968:270-275). The following relation, taken
directly from that development, expresses the instantaneous (i.e.,
not time-averaged) power loss per unit volume () in terms of instan—

taneous, real pressure and velocity:

A ) _ — _9 aux Buy aux U
D = (n +-§u}(v W)+ ulvx ul® - 4“[am 3y | oz oz

ou. du U U U JuU 90U U
4 _B_ T _ ¥ _ = _ 3B _ z}
3y 9z 3y oJx 3z . dx 3z 9y j

(71)

where n is the bulk viscosity coefficient, and u the shear'vis;osity
coefficient. This equation is actually derived for gases, but should
not be seriously inaccurate when applied to (hdmcgeneous) liquids.
However, tissues are one step further removed, because they are quite
heterogeﬁeous, although fluid-like. In spite of its shortcomings for
- the current-applicatibn, this relafively éimple equation is a good
‘starting point for this viscious-loss problem. Although (71) is stated
"partially in terms of Cartesian coordinétes, réther than cylindrical
‘vor spherical, this particular form of the egquation need mot be restated,
as is shown below.

vFor tissues, u is typically much smaller than n, so that Equation
'71 can be~simplified signifiéantly. The constant u is assumed to have
'fhe same value for tissues as- for water, for which p = 10—6 mg/mm * us.
EIn contrast, n for tissues isbgenefally on the order of 10—3 mg/mm.-us.
1Thereforé,'for u << n, and also_assuming'thaf the magnitudes‘of the

other factors. are not markedly different, {(71) becomes
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D= - w2 (72)

This equation can be restated in a more useful form by reexpres-
sing the divergence term. Turning back to the original wave equation

(1a), it is seen that

> - 1 3p
Veus_—— 5& a
3 7 B3z | (732)
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Use of relatioms similar to Equations 15 and 19 vields the following
more compact form:
=  — ik {(73¢)
vous (7} =
Finally, taking the real part of (73c) is required, because the complex

. v - —2
representation is prohibited in squared terms such as (V » u)7; thus

Voeu=2e( )
Ny
== | [Fe]
= Kjr) s '
= -Z—LQ | sin(ut ~-<Ip" (74)

«

where IE'[ and <Jp' denote the magnitude and phase, respectively, of
p', the time-independent part of p. Substituting (74) into (72). gives

‘the desired restatement of the latter equation:
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an 2o |

D = nlkp s:mz(wﬁ -<Sp" (75)
Z J

From this expression, the time-averaged (denoted by brackets (<>))

power loss is at last obtained:

L0 2
{EJ;_L} 76)

E’v(r,qb) =

N |

Z

i1

<D>

As regards use of Equation 76, % and 7 are known constants, and p'
for this lossy case is approximated by the previously evaluated loss—
less pressure distributionm, but n remains to be determined. This step
is achieved by turning to the simpler case of loss in plane wave pro-
pagation. The‘experimentally measured total power»loss per unit volume
(<dg>), given in terms of the absorption coefficient o, is equated with
viscous power loss (<D>),'in terms of n. Of course, such a relationship
relies on the aforesaid aséumption that a bulk-viscosity mechanism is
entirely responsible for power loss in the tissue.

Proceeding as outlined, power loss in terms of ¢ is

<d@> = 2a<I> (77)
where
- p? 12
T — . .
<I> = 22 {78)

is a well known ex?ression (Kinsler and Frey, 1962:121) for the time-

averaged plane wave intensity, given in terms of the pressure amplitude

lﬁfl. Combining (77) and (78) gives
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lo'?
<d@> = o - (79

For ease of comparison, the expression for <D> from (76) is restated

as follows:

2 2
<D> = K . 12! (80)
27 Z

When <d@> and <p> are equated, it is readily seen from (79) and (80)

that the following relation must hold true:

&>

“ =77

(81a)
or, solving for n,

n = 282 (81b)

It should be noted thar the frequency dependence of o and k% implies
that n, too, is not a constant but, instead, is also a function of f.
In summary, the viscous power loss per unit volume (Eb) is given in
Equation 76, where the bulk viscosgity coefficient n is determined
according to (81b) from a known .

An alternative approach to estimating power loss is to sidestep
- the question of mechanism entirely, and merely interpret {(77) more

broadly, as follows:

<dQ> = 2a<(_ﬂ > : . ) (82)
where '

IT] = [pu|

=pluf (83)
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According to this expression, the estimated power loss is computed using
the magnitude of the intemsity vector for a generalized wave distribu-
tion (including standing and travelling wave components), as opposed

to the original interpretation using the scalar intensity of a plame

(travelling only) wave. A difficulty encountered with this procedure
is that the magnitude of the velocity vector dces not, in gemeral, foli-
low a simple-harmonic pattern; i.e., 151 does not have a sinusoidal time
dependeﬁce.'vThe only exception to this general rule occurs if both com-
ponents of Z; namely U, and u¢, are in phase. Therefore, in generai
no siméle exact expression is obtainable for time-averaged ffﬁ. Never-
vvtheless, the analysis proceeds by employing the following approximation,
which ié valid.if u, and u¢ are not significantly out of phase:

<|T]> = | D (86)
Now {€f$f is simply evaluated as follows:

15| = v ]

= gRelp @91 (85)

.Reﬁriting (82) using (84) and (85) yields the final expression for

estimated absorptive power loss:
E (,9) = a|Relp’ @") 1]
> <dQ> | (86)

- It is worthwhile to note-that the expressions for E.

and ¥ iven
van ag

in (76) and (86) differ primarily in that the former quantity is pro-

‘ . . 2 . . . .
-portional to p , as seems reasonable for a bulk-viscosity mechanism,
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whereas the latter varies according to the product pPu, as a result of

the intensity-based approach.

Computation of Eb and E& is performed in programs SCL and SSR,

based on the lossless wave distributions calculated therein. Isomagni-
tude plots are then produced by ISOLOS, from which iikely hot spots can

be located visually, as regions of peak loss.
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3. COMPUTATIONAL DATA AND RESULTS

3.1 Data

The set of parameters which describe a given soft-cylinder or
—-sphere problem is listed in Table 3, along with standard parameter
values, and restrictions in programs SCL and SSR. These values are
assumed to have been used in both analytical and numerical work,
unless otherwise specified. These parameters uniquely determined a
given problem, but other seté of prarmeters could serve just as well;
this set isvused merely for convenience. Additional comstants calcu-
lated from these parameters are presented in Table 4, which includes
the equations used to perform the calculations.

The unusual set of units, mm-mg-us, was selected so that most
‘constants and variables have values near unity. This situation is
'desirableffor numerical work, because some of the error control is
_based on absolute instead of relative values, and performé best for
"variablesvwith values near omne.

For the various computational runs, the parameters a, and

913
‘_ci were varied about the standard values. Changing the radius g,

with F constant, permits examination of the effects of object size

is a good

. wersus acoustic wavelength; the_quantity-kla = Zﬂa/kl

indicator of this comparison. On the other hand, o, and/or c. were

i 1
:ghanged with 0, and_cz comstant, in order to explore the importance

~of the impedance mismatch. . )




TableVB

"Standard"” Values for Computational Parameters

Restrictions
in Programs

Value Units ‘SCL/SSR
20 0 < N, <20
i
1 0 <NZ’ZE 20
100 ' 2 <N¢ <100
1 i : f>0
2.5 mm a >0
2 2
1 mg/us” ¢ mm = kN/mm P>0
1 ‘ mg/mm3 oq > 0
1 - mg/mm3 0, >0
1.5 B mm/ s c, > 0
1.5 mm/us ey > 0
0.005 Np/mm * Mz ' 5, = 0
0. (Np/mm * MHz) & 0




Table 4
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Additional Quantities Calculated from Computational Parameters

Equations Used

Symbols Units for Calculat‘ions‘_
w Mrad/s w = 2%f
-1
kl’ kz ™ i)
Zl’ Z2 Mrayl (15)
Arl ™m (58a)
APZ mm (58b)
Ad rad (59
»’czl, o, Np/mm (87)
N., N mg/mm * us = 104 poise (81b)
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The grid parameters, er, Nfz, and N¢, were chosen for analytical
work so that region 1 alone is examined, by means of er = 1. The
other two parameters reflect a tradeoff between plot resolution, and
computation and plotting times. Imn general, it is desired to have the
number of points in some way proportional -to the value of kla, but the
standard grid size was not altered, in deference to computaticnal
expenses. A different set of values was used for numerical work; the
choice of Nf = N%Z = 10 and ZVqb = 60 is discussed in Sectiom 2.3.

The remaining parameters were selected with regard to ultrasonic
irradiation of tissue in general medical situations and in the particu-
lar case of a pregnant mouse. In the latter case, the developing
fetuses can be groésly modelled as uniform, soft spheres.

The frequency range of interest is 1-10 MHz. However, the only

frequency-dependent quantities are k.a {and kza) (ignoring the slight

1
frequency depegdence of eq and 02) and a; {and az}. As is later dis—
' cussed, the latter absorption coefficient is almost linearly propor-—
tional. to frequency for tissue irra&iated in this frequency range.
Thus little new information is obtained by monitoring the overall
change in loss due to the frequency dependence of Q- Also, variations
in kla can be "produced” via‘f or a, so that it is sufficient to keep
constant and vary , or vice versa. The former alternative was chosen;
accordingly, the "standard" value f = 1 MHz was used for all computa-
tions. ‘ ' .

In analytical work, the.radius g was varied over the range 0.25
o 10 mm, so that k,a took om values from about 1 to 40 rad. The former

1

extreme approaches the long-wavelength limit (kl >> g) with A, ~ 6a,
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;whereas the latter extreme nears the short-wavelength 1imitA(kl << a)
.with Kl ~ a/6. In numerical work, only the value =A0725 mn (the
~minimum in analytical work), was used, in an attempt to minimize
 excessive computation times and storage requirements. Presumably,
"slight increases in the radius a could be tolerated without altering
“the grid size. However, the value ¢ = 10 mm (the méximum in analytical
:work) would require so many sample points that the various numerical
‘arrays could not be accommodated in the user memorf allocation of 129K
JGO-bit words (on a Cyber 175). The only solution would be a memory-

~swapping technique, which would drastically reduce execution speed.

As discussed’in~8ection 2.2.5, the value P = 1 kN/mm2 for the

-incident pressure amplitude was chosen to remove P, in effect, from
”thg various expressions, so fhat the pressure and velocity variables
are normalizéd. This is a tremendously»high pressure, which would cer-
tainly violate all assumptions of linear particle displacements. Yet,
the physical absurdity of the value is of no consequence, because only
‘relative distributions are sought.

1’ pz, and cz are near those of water
:at 20°C (p = 0.998 mg/mm3 and ¢ = 1.483 mm/us)f The standar& values

The standard values of pl, e

constitute an arbitrary reference, in that the relative values of

Py C

1 and Pys G determine the highly important impedance mismatch.

The absolute values of these variables were chosen near those of water
‘for simpliicity and relevance, because the properties of 'soft, fluid-like
tissues are quite similar to those of water (0'Brien, 1977; Goss et al.,

:1978).’ In analytical work, thé values of o1 and ¢, were each varied
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separately by %57 and +20% from the standard values, while the other

three parameters remained unchanged. The smaller range represents
typical tissue variations, while the larger represents the maximum
observed wvariations, and is included mainly to permit generalization
of trends regarding hot spots. On the other hand, only a single case
was considered in s11 nﬁmerical work-—that of an approximately 4%
increase in cl over the standard value. It is thought that a larger‘
impedance mismatch might be useful to increase the scattered wave,
thereby decreasing the importance of computational errors resulting
from the application of boundary conditions (see Section 2.3).

Finally, the absorption-proportionality constants &1 and &2 were

selected in regard to the following experimental observation (Johnston

et al., 1979) concerning the frequency dependence of ¢. and o_:

1 2
o, = o f (872a)
and
a, = 8".2)" (871)

.ihe standard value of &1 (éhown in Table 3) is 0.005 Np/mm-Miz, a
typical value for tissues with low collagen coﬁtent. Thus by Equation
:87a, the absorption coefficient‘ul = 0.00S Np/mm, at the standard fre-
}gﬁency f = 1MHz. The value &2 = 0 is used. to force o, = 0, in accord-
;anée'withAthe assumption that region 2 is loésless. In fact, this

assumption is arbitrary--it is made merely to be consistent with the

examination of loss solely in object interiors. The particular value
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of ey does not affect the first-order estimate of loss in region 1,
.because this estimate is based on the lossless distribution. Also
vnote that this first-order estimate is reasonable: iﬁ‘tﬁe worst case
of ¢ = 10 mm, the intensity of a plane wave decreasing according to

‘exp(—Zalx) would fall only by about 18% in a distance equal to the

.object diameter,

3.2 Analytical Results

3.2.1 Checkout of programs. A significant portiom of the program-—

'ﬁing effort and a sizeable number of experimental runs have been devoted
to testing the analyticai com@utations. In the first place, it is
important that all these calculations be correct, so that the general-
,iéétions built upon them are also accuraie. Also, correctness is
essential because the analytical work is.the checkpoint for the current
‘and perhaps future numerical work.

T@e'first step was to check the accuracy of the mathemétical func-
‘tion subroutines, listed in Table 2. Routines RBESJ and NBESY are
:ﬁpackaged" programs which have been checked prior to their release (Con~—
:t;ol Data Co:p., 1973:3~5, 3-6: Table 3.2.1). Therefore, these programs
“a:é presumed to be correct and are given ne further attention.

On the other hand, routines SBESJ and SBESN are privately supplied
‘programs which have not been thoroughly tested. Values for both routines
%ere‘checked to a few éigits precision for several arguments and for
oréers m=0,1,2, using a fable'of spherical Bessel funétibns*(Morse and

Ingard, 1968:899). - This check Tesulted in: the modification of SBESN to
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correctly compute ngx), instead of -ymCx), as originally set up. In
addition, routine SBESJ was checked to much higher precision and for a
wider range of arguments and orders, by comparing results with a pack-

' also checked prior to its release {(Control Data

aged program ""BSJ,'
Corp., 1973:3-~10: Table 3.241), like RBESJ and NBESY. It was found

that thé values differed by as much as 1% for orders m > 20, with
arguments up to 4 (for which range downward recursion is used). How-
ever, these discrépancies are of no consequence, because thevseries
eﬁpressions are always truncated by the programs before the possibly
erroneous higher-order terms are reached. It is assumed that SBESN does
not suffer from a similar problem, because upward recursion is used for
all argumenté. It was also found that SBESJ (and BSJ) encounters gross
errors for arguments near a multiple of w; this proﬁiém and a recommended
solution,arefaiscussed in Section 2.2.5. ;

Finally, the routine ALEG was also checked with a table to a few
decimal.places for a few lower orders m=0,1,...,9) with several argu~
ments (Morse and Ingard, 1968:898). As with SBESN, the occurrence of
higher-order inaccuracies with ALEG is unlikely, because upward recur-
sion is again employed.

The next step in the programs checkout cdnCerns the rigid-object
programs RCL and RSR.H These'progréms bear great resemblance to each
_other; because the rigid-cylinder and -sphere problems have very
similar Solutions.'_ln fact, program RSR was obtained as a mere adapta—

tion of RCL, so that the correctness of one program supports the cor-

rectness of the other. This relationship applies directly to the




following test of program RSR. Using the regularly calculated scattered
pressure gé and values for-g% supplied by a temporary inclusion, the }
total pressure in region 2 was obtained as gé = gé {b_% (as in Equation [
88a below). This pressure gé was evaluated, for kza = 1, at the sphere.
surfaée(r==a)and at 30° intervals in 6§, and was checked with corre—
sponding values calculated by a fellow student, using very dissimilar
methods.

Of course, this procedure applies only to the pressure, and not

to the velocity. As a broader check of the programs RCL and RSR, both

variables gé ahd‘g%s were used to compute the far-field (i.e., » >> q)
radial intensity <Ifs> according fé Equations 31 or 54. As shown in
.?iguresA3 and 5, respectively, the angular distribution of <;fs> was

- plotted using ka = 1,3,5 for both the cylindrical and the spherical
cases. These plots were compared with correspondlng sketches given by
Morse and Ingard (1968:402: Figure 8.1; 420: Figure 8.4) and reproduced
in Figures 4 and 6. In all cases; the plots and sketches match
“qualitatively well. The slight discrepancies are attributed to the
Vantiqﬁated plotting methods originally used to produce these plots,
which are taken directly from a reléted book whose first edition was
published in 1936 (Morse).

" The first checkout stép for the Sqft—object programs SCL and SSR
compared solutions computed by these programs for the limiting cases
oL'rigid objegts with the respective "exact” solutions-computed By the
frigid—object.progfamé. The rigid-object extremes were simulated in

the soft—ooject programs by means of high Py and standard cy> in
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Angular distribution of radial intensity (<I% >) of wave
scattered by rigid cylinder, in the path of an incident
plane wave moving to the right. Three cases are shown:
(a) ka = 1 rad, (b) ka = 3, and {(c) kg = 5. The intensity
is evaluated in the "far field"” (» >> a), specifically at
r» = 100 - a¢. These plots have been scaled so that the main
lobes are the same length as those in the reference plots
in Figure 4. The calculations and plotting were performed
using program RCL.
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Scattered radial intensity for a cylinder as in Figure 3,
=1 rad, (b) ka =3, and

again for the cases (a) ka =

(c) ka = 5. A right-moving incident plane wave is indi-
cated by the arrow on each plot. These plots are taken
from Morse and Ingard (1968:402: Figure 8.1). " The radius
of intemsity evaluation is not known.
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Angular distribution of radial intemsity (<Iw$>) of wave.
~ scattered by rigid sphere, in the path of an incident plane
wave moving to the right. ' Three cases are shown:

(@) ka = 1 rad, (b) ka = 3, and {c) ka = 5. The intensity
is evaluated in the far field, at » = 100 - a. These plots
“have been scaled so that the main lobes are the same length
" as those .in the reference plots in Figure 6. The calcula-

tions and plotting were performed using program RSR.
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‘Scattered radial intensity for a sphere as in Figure 5, for
the same cases (a) kg = 1 rad, (b) ka = 3, and (c) ka = 5.
‘These plots were taken from Morse and Ingard (1968:420:
Figure 8.4). The radius of intensity evaluation is unknown.
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*ﬁgae with the discussion in Section 2.2.2. For both SCL and SSR,

k. 3
@fcoridition p, = 1000 mg/mm”~ 10° resulted in a slightly

2
il ihéd distribution for s significantly_ reduced :u‘;?, and agree-
TERE aﬁout 0.1% (for cylinder; 2% for sphere) for g_; and —g—é, és
Compaz with the solutioms calculated by RCL and RSR. All of these
agree with expectations.

écond means of checking t1_1e soft-object programs is to verify

thag @ “boundary conditions, Equations 20 or 46, are satisfied. Thus,

pEograms - SCL and SSR were temporarily modified to compute total vari-

2; + pﬂ" (88a)

g+ U (885)
U T Uy (88¢c)

s of these variables at the object boundary r = g were com-—

! for a series of angular samples in $. vThe matching of

_¢w>

the boundary conditions. It was also verified that tangen-




82

Finally, a very simple yet effective scheme for checking programs
<€$5and SSR is presented. Suppose that regions 1 and 2 have idenﬁical
ﬁstic properties (i.e., pl = p2 and cl = cz). Then)nd>impedance

match exists, so that the incident plane wave propagates undisturbed, .
'Epreseﬁted by<gé = P in region 2 and Q& = P in region 1. Also, the
ftered wave should be zero, i.e., g; = 0 in region 2. These rela-

& ﬁships are readily verifiable.

Fﬁrthermore, the check can be extended to include the velocity_i

bugh'the‘use of the intensity, as follows. First, for a plane wave

h pressure amplitude P,vit is well known (see Equation 78) that

<7 =2 | (89)

S “, an&’u¢’are in phase, so that Equation 84 holds exactly. Then

ale
E = =
al- Z (902)
1
asz : o _ v
Eaz Z2 » {90b)

(D
[
o
NN]
ot
]

22 is the basis on which these equations are derived. Thus

1nand‘E&2 should be constants, which are equal if Ay = Oy Of course,

E ﬁas made nonzero only for testing purposes; normally, ¢, = 0 was used,

2

ause region 2 is assumed lossless. Now, both the pressure and the
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intensity predictions were essentially verified, although not quite
exactly, because the assignment Z2 = 1.000 001 - Zl ESZl was used to
avoid computational difficulties which ensue for 22 = Zl' Tﬁis check
supports correctness of all aspects of the computations all the way
through to that of Ea’ including calculating the radial and angular
factors, combining them into the correct variables, and finally trunca-
ting properly.

Lastly, the plotting programs ISO and ISOLOS were checked with
regard to correct values for Fmax and Fmin (see Section 3.2.2 for
definition). Also, the approximate shapes and locations of a few con-
tours were predicted.from-numerical‘data and compared with the actual

plots.

3.2.2 Spatial distributions. As has been previously discussed

(see Section 2.2.5), programs ISO and ISOLOS plot isomagnitude and,

where appropriate, isophase contours for variables whose spatial dis-
tributions have been calculated analytically by programs SCL and SSR,
for thé cylindrical and spherical cases, respectively. More specif—
ically, program ISO plots the wave variables |p'|, [g%i,.and {gél as
isomagnitude contours, andcﬁiﬁf,cﬁﬁg%, and<ﬁ£zé ;s isophase contours.

Program ISOLOS plots the estimated power-loss variables EU and Ea as

isomagnitude contours.
Both programs plot the toral distributions of the aforementioned
variables, using values on 2 polar grid. Im region 1 of this grid,

-

representing the cross. sections of the object interiors, the quantities
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;{g;w, and géw comprise the total solution for the wave variables.
‘the other hand, the quantities E%: 2;2, and gé2,>asbdefined in
ﬁations 88, are the total wave variables in region 2, representing
e object exteriors. The power-loss variables Evl’ Evz, E&l’ and
élare calculated using the total wave variables of the correspond-
Qg regions. A dashed circle represents the cyiinder or sphere bound-
ry, separating regions 1 and 2.

" However , in spite of the capability of the programs to examine
svlﬁtions both inside and outside the objects, this thesis focuses on
itial distributioné solely within the objects, by means of the par-
ter choice N? = 1. This approach is in accordance with the assump-
nf(see Section 1.2) that region 2 is made up -of lossless material

ocall the parameter selection &2 = 0 in Sectien 3.1).

The spatial distribution of a given variable is illustrated by

ZNr - 1IAF
17‘/\—F . +3. ."".-;' +- =
min ZAELE, 7 RAE, . *“min 2
F -7
max min (91)

and 7 represent the

he incre tween contours, and F_.
h‘ 1gcrement between contours, an i Mo




‘minimum and maximum values of the plotted variable FO on the polar
“grid (including the interpolated center point). For isophase con~

‘tours of a modular variable FO (with modulus 2w), the NL contour

~values (in radians) are

0, AF, 2AF,...,(N7 - 1)AF

]

>
By
mn

ShE

(92)

This full range of'angular values—-which ignores the particular values
of FO——is used for isophase ceﬁtours, bécause of the ﬁeaninglessness
of "minimum" and "maximum” with regard to modular variables. TFor both
fypes of contours, the above contour values are assigned level numbers
W.through .; the level number of each contour is displayed one space
'tb the right of one randomly chosen point om the contour. It is impor-
‘tant to note that the contours themselves are numbered, instead of the
regioné between the contours.

The following figures show groups of plots illustrating specific
features and trends in the spatial distributions of the wave and power—
'loés variables. These single-page groupings are useful for comparative
@urposes, but the neéessarily small size of the individual plots
bscures many details. Therefore, full-size versions of every plot are
supplied in the Aépendix; in order to provide a detailed feference.
Note that each group of plots illustrates a trend only for a single

object shape (cylinder or sphere), and that all figures are presented
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n cylinder/sphere pairs (on two separate pages). As a result, compar-

ons between object shapes, ceteris paribus, are performed using plots

‘identical locations on two successive pages.

Both small and full-size plots are identified at the left éf each
rawing by (in addition to the figure captions) nopations of contour

pe (isomagnitude or isophase), object shapé (cylinder or sphere),

d varisble ('}, 1, E, or F , indicated by "PRESSURE," "RAD VELOC,"
G VELOC," "LOSS—-VISC," or "LOSS—-ABS," respectively). Also, values
the variables ZP, kla, @5 Pys 05 Cps Oy s Npoint (the total num—

or of contour points——limited to 5000), and NL are displayed with all
's. Values of Fﬁin and Eﬁam appear only with isomagnitude plots,

1values of n, and n, are noted only with plots of Ev.

1 2
In some of the following plots, in which the contours are close

other, it is difficult to discern the correspondence between level

ers and contours. However, this difficulty can generally be

oying the "process of elimination" (there is a one-to-ome corre-
dence between plotted contours and displayed level numbers). It
be helpful to refer to the full-size versions of the plots

in the Appendix.

first set of plots, Figures 7 and 8, present typical examples

six plots which can be produced by program IS0, namely isocon-
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Isomagnitude and isophase contours showing typical distributions of
wave variables (pressure (p'), radial velocity (z;), and tangen-—
tial velocity (#!)) in cross section of cylinder (with e, 5%

higher than Cys and kqa = 10 rad).
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wre 8.  Isomagnitude and isophase contours showing typical distributions
of wave variables in cross section of sphere (with Cl 5% higher

than-cz, and kla =2 10 rad).
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= 2.5 mm) is somewhat greater than the acoustic wavelength, as
&icated by the value kla = 10 rad. The impedance mismatch is mod-
éte and is the result of a discrepancy in the acoustié velocity:
~?®ﬁihin the object) is 5% higher than e, (and aiso 5% higher than
S‘“standard” value). The densities are matched and are set to the

andard values. The dimensional units of the displayed parameters

d. constants can be determined from Tzbles 3 and 4. The units of

2 1 1 S |
and E%ax) are kN/mm” for |p'|, and mm/us for IE?I and |
‘As regards the interpretation of the plots, first suppose that
'impedance mismatch did not exist, so that the interior pressure
“Bé would be merely a continuation of the incident plane wave Bé.
his‘case, for the isomagnitude plot of ]Ef{, the pressure ampli-

2
would be P at all points, resulting in F . =F =P (=1 kN/mm ).
min max

ontours would be drawn, because LE%I would take on a single value

den: i s indi - F . < P F > P,
‘dent.pressure amplitude P, as indicated by Eﬁan and E%ax

range of valu F . through F is greater in the spherical case
ing es min g o gr I P 3

's-almost always true. The isophase contours possess the general
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central portion of the objects. Second, some more random phase dis-

~tortion is observed on the right side of the object, as shown by
"wavy" phase contours. This distortion generally is more prominent
~in the spherical case, other things being equal, and usually occurs
‘in the regions of greater nonuniformity of magnitude. The situations
tin which these phenomenona occur and their significance will be con-
sidered later in detail.
ttention is now turned to the particle velocity plots. The
isomagnitude plots for Ig%l and ig&! show essentially radial contours,
with strong angular dependence. Each particle velocity component is
large at the angle where ‘it is aligned with the longitudinal (horizon-~
al, in this case) particle movement of the incident wave, and is
small at directions orthogonal to this movement. Thus the radial
elocity amplitude is greatest along the horizontal axis, where the
émgential velocity has minimum amplitude, and vice versa along the
:ticél axis. ©Note that Eﬁin = 0 for ]gé},as required by symmetry at
he“horizontal axis; omn thg other hand, Eﬁin is relatively small (as
ared with Eﬁam) but nonzero fOr[z;l.

These isomagnitude contours for particle velocity show primarily
angular dependence of the (arbitrary) velocity components and
cure the effects of the acoustic~velocity mismatch. Thus it seems

plotting g% and u! is not a good way to elucidate these effects.

=5
ideal alternative would perhaps be to plot the amplitude pf the

itude of the particle wvelocity vector u. However, such a gquantity

- C . . ) N . . -
‘not in general exist, because |u| is not "simple harmonic" (unless
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the components, say U, and Uy, are in phase-—see discussion in Section

~2.4). Owing to this difficulty, no additional plots of particle

velocity will be presented.

The "distortion" around the center in the plots of fu'] and Iu

_cb

deserves special mention: it occurs partly because the discrete polar

grid performs poorly in Tepresenting converging radial lines. Also, a

.more general and recurring problem contributes to this distortion:

the process of interpolation in "guessing” a value for the missing

.center sample frequently results in anomalous curves in this area.

~This "strangeness” in the contours should be ignored.

. P’ . Y 1 L4
Finally, the isophase contours for<ﬁhﬁp and=<i2¢ are considered.
They are quite similar to the curves for:iigf, The "garbage" along
the vertical axis with<i¥Z; and along the horizoatal axis with<§[gé
“owes to the very low magnitudes of the velocity components in those

sareas, and is of no significance. Also note the symmetry—-dependent

phase reversal'of<iiu’ at the horizontal axis.

4

Figures 9 and 10 compare (for the cylinder and sphere, respec—
»tiveiy) the two estimates of power loss per unit volume Ev and F_ for

hreé different cases. The first and second examples entail relatively

large spheres (a¢ = 5 mm) and thus high kla, whereas a much smaller sphere
J(a = 0.25 mm) is used in the third example. A moderate velocity mis-
atch (cl 5% higher than ¢ ) is imposed in the first and ﬁhird

1nstances and a large density mismatch (ol 207% higher than p2)~1s con—

sldered ‘in the second case. These selections are intended as a repre-

entative sample of the many possible situations. The dimensional
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9.. A comparison between two estimates of power loss (per unit vol-
ume), viscous (£ ) and absorptive (Ea), for three representative
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units of the contour values are MW/mmB. Three important criteria upon
which the»estimates can be compared are the magnitudes,vsizes, and
locations of "hot spots."” These areas of relatively high heating are
identified on the "hotter" side of contours with high level numbers

{i.e., those near and including ¥ The degree of heating in these

-
hot spots is dependent on Fmax' Thus very hot spots are found inside
cc tours with the highest level numbers'CNL), on (isomagnitude) plots

f‘Ev or E& with relatively high wvalues for E%ax' ‘However, it must be

orne in mind that contour values can be similar even if level numbers

é different and values for Nb are the same, if wvalues for %%ax and/or
differ between two plots. Thus level numbers alone should not be
§éd in comparing the magnitudes of hot spots.

" On the basis of the previous cfiteria, this author considers the
rét‘pair‘of plots (on each figure) to be a fair "match,” the second

r -a. poor match, and the third pair a good match. Thus the éstimates
em to agree beét for smaller objects (or lower kla) and lower mis-

nitches; these generalizations hold for both cylindrical and spherical

cts. In almost &ll instances, ¥ __ is higher and 7 . is lower for
max min

'viscosityfestimate Eb_than the corresponding values for the gener-

ed:z2bsorption estimate Ea. Moresover, 'a greater degree of spatial

miformity occurs in plots of Eﬁ.

It is thought that the narrower Fmax range of E& and its lesser

jal diversity result from (undesirable) phase cancellation in the

product p|u| used in the estimate. This error occurs from the applica-

Zhn' of the absorption estimate to situations in which standing waves




are present; the absorption equations (77) and (82) are strictly
éccurate only with travelling waves.  The presence of standing waves
is readily verifiable in the first and second cylindrical éases, as
findicated by the curved, equally spaced "bands" in the plots of E%

1

.' . ] ) 2
(recall from Equatiom 76 that Ev is proportional to ]B&l , so that

_ 1
‘a2 banded pattern of [Eé[ is suggested).

The effects of object size and impedance mismatch on viscous

ower loss Evl are explored in the next eight figures. The first two,
gures 11 and 12, show isomagnitude plots of EL for six radius values
for the cylinder and sphere, respectively), illustrating the signifi-
dance of thié parameter and, more generally, of the quantity kla.

ere is a moderate velocity mismatch, with e, 5% higher than ¢

1 2°
hereas o1 and P, are equal and are set to the standard values. It is
adily seen that 7 increases {(and 7 _. decreases) with inéreasing

max min
{or kla), for both the cylinder and the sphere, indicating increasing
ﬁuniformity'with larger objects, especially with the sphere. The
ues given for maximum Eé can be compared with a uniform
. ' ©3 . i . .
2 O.OOS&VMW/mm which results with no impedance mismatch, for
jects of all sizes.  Observe that Eﬁa& is near this value for
aller objects of both shapes, but increases to about 130% of the

¥ue'forAcylinders of radius 10 mm (for which kla = 40 rad) and to

6ut220%for spheres of the same radius.

As régards the locations of hot spots, most heating occurs at
upstream'” (left) boundary of both cylinders and spheres of small

dii. For larger radii, both objects exhibit more spatial diversity,
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Illustration of dependence of viscous power loss (&,) in cylinder
on k.a (i.e., relation between object size and acoustic wave-
length). Six radius values are considered, for which %, ranges
from about 1 to 40 rad. A 5% velocity mismatch (cl > 07} is used
in all cases. -
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again shown for X_ g ranging
% velocity miSmatch
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ncluding "focused-looking" h&t spots inside the "downstream" (right)
alves. In addition, hot spots are seen at the "side" (top and bottom)
oundaries of larger cylinders. Finally, note that for theilargest
bjects (@ = 10 mm), the plot resolution is rather poor, owing bofh to
n insufficient polar-grid point density and also to the necessity of

using only three contour leveis, in order to maintain W

point = 5000,

previously mentioned.
The importance of the acoustic-velocity mismatch is examined in
guresvl3 and 14, in which isomagnitude plots of Eb are shown for
,;ur values of ok The first two cases (describing the relatively
%1gid-object" situation, for which ¢

> cz) entail ¢, being a moder-

1 1
5% and a much more extreme 20% higher than Coe Similarly, the

ccond pair of plots (cl < cz) uses the values ey 5% and 20% lower

ance mismatch, upon which attention is presently centered, and second-—
1y as changes in the quantity kla, the importance of which was

(above

died in the previous figure set. Thus a 5% increase in ey
; set to the standard value) results in a 4.8% decrease in the
edance ratio Zr’ as calculated using Equation 23, and in the

ntity kla, according to Equation 19a. In work related to this

gesis, it has been found that increases in the impedance mismatch,

ismatch value Zza = 1, generally result in increases in Ehax and
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Dependence of viscous power loss (F) in cylinder on the
velocity mismatch, shown for e, 5% and 20% higher and lower
than e, {and klaé% 10 rad).
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e 14, Dependeilce of E, in sphere on the velocity mismatch, shown for
: values of ey =5% and #20% with respect to cz (and kla =~ 10 rad).
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in spatial "peakedness" and complexity. As regards kla, the previous
figures (11 and 12) demonstrate that increases in kla generally elicit
“increases in E%ux’ with larger increases for the sphere.b‘Now, both
qu the previous factors affect Ebl indirectly by means of the pressure
:Qé. However, Equation 80 shows that E

v1
Ak

» but also inversely proportional to the characteristic acoustic
2
. , - v . 7
impedance Z1 = plcl (where the quantlty_nl&I/ZZl, or o

is not only propertional to

1 by Equation

8la, is held constant). Thus a 5% increase in e, uniformly decreases

Ebl by 4;8%, affecting E%am but not the spatial distribution. In sum-

mafy, a change in cl affects Eﬁl indirectly, by means of ZT and kla,

and directly, by "inverse proportionality."
‘It is now appropriate to demonstrate the above statements by
plication to Figures 13 and 14. First, effects on Eﬁax are consid-

‘jfed. In the situation ¢y > cz.and for both object shapes, the

expected increase in F .» When ¢, is raised from 1.575 to 1.8 mm/us,

1

- blunted by the effects of the decrease in kla and the uniform inverse-

ﬁpportional decrease in F Thus Fﬁax increases only 22% with the

v1°

linder and 23% with the sphere. On the other hand, when ey is

wered in the situation cl < cz from 1.425 to 1.2 mm/us, all three
tors act to increase F , resulting in a 270% increase with the
inder and a phenomenal 14-fold increase with the sphere. (Another

IBactor supporting the greater increases in Emax’ in the latter situa-

Eion of ey < Cys is the larger fractional change in Zr when ey is

.

eased a given percentage, rather than increased.) It is also seen

the degree of spatial nonuniformity tends to parallel the
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magnltude of E%ax'

In addition, some generalizations are possible concerning the

‘locations of hot spots. In the former situation (c1 > cz), "focused"

‘hot spots are mainly found within the downstream halves of both the

icylinder and the sphere, and/or at the side boundaries of the cylinder.

‘As for the situation cl < cz, the hottest spots are primarily located

‘at the downstream boundaries of both objects.

- Another obvious and instructive arrangement of parameters is an

mpedance mismatch owing to demsity, instead of acoustic velocity.

hus, in Figures 15 and 16, four different (monstandard) values are

sed for the interior density oy with all other parameters set ro

andard values. Similar to the choices for cl in the previous figures

13 andllé), the situation Py > 0, is studied using p, 5% and 20%

1
igher than 0, (standard), while the values °; 5% and 20% lower than

provide information about the complementary situation (pl <p

as compared with previous

20 -

‘iﬁportant-difference in this case,
anges in al,-is that the quéntity kla is unaffected by changes in
:While tﬁe impedance ratio ZP_is affected by ey exactly as it is

By ﬁi; In addition, Eﬁl i1s inversely proportiona; to 0q> just as to
Therefore, this case merely'excludes the effects of changes in

;iwhich have been manifested in the previous two figure sets.
;Agéin, effects on Eﬁax of changes in pl are first examined.
‘pi is increased from 1.05 to 1.2 mg/mmBIfor the situation oy > 0ys
intreased impedance mismatch tends to inc;ease F However, this
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Dependence of viscous power loss (ﬁv) in cylinder on the density

mismatch, shown for g, 5% and 20% greater and less than p, (and
1° 2

kla = 10 rad).
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jire-16. Dependence. of £, in sphere on the density mismatch, shown for

N +5Z and #20% with respect to p 9 (and kla =~ 10 rad).




105

increase is now countered only by the uniform inverse-proportional

decrease in Evl’ and not also by a decrease in kla, as was the case

Therefore, it is not surprising that 7 increases
ax

1° m

by,34Z with the cylinder and 77% with the sphere, as compared with
22% and 23% in the previous case using Cq- Conversely, in the situa-
tion pl<<p2, the decrease in pl from 0.95 to 0.8 mg/mm3 also tends to

ncrease Ewax’ but now this increase is reinforced only by the uniform
4

verse~proportional increase in Evl’ and not also by an increase in

iq, asvwas previously the case. These factors help to explain why

he increases in Fmax in this situation are 577 and 230% for the
yiinder an& the sphere, respectively, versus 270% and 14007% increases
iV?igures 13 and 14. ZLastly, in all these cases for which the imped-
'miématch dwes to density, "focused" hot spots are comsistently
uﬁd ﬁithin fhe downstream halves of objects of both shapes.

”The last set of viscous-power-loss plots, Figures 17 and 18, are
perhaps a more realistic combination of the situatioms studied in
Gioures 13 through 16. -Impedance mismatches of approximately *57 and
A‘are again considered, but are now realized through contributions

m-both °1 and ¢ Thus for both object shapes, the relatively

1"
gid-object" situation (Zl

nd‘pl are each 2.5% higher -than ¢

> Z2) is examined for the case in which

9 and P95 respectively, so that

s'5.1% above Zz_(standard), and also for the case of ey and oy
being 10% higher than the standard values, so that Zy is 21%

- Conversely, the relatively "'soft—object" situation (Zl < Zz)

and 7. are

u&ied for the complementary cases in which cl, pl, 1
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edn
ocity
Four cases are considered, for which Zl is about
5% and 20% above and below Z2 (and klaéé 10 rad). .
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Dependence of Ey, in sphere on a combined impedance mismatch
owing equally to velocity and density, shown for Zl *57 and

+207 with respect to Z2 {and kla = 10 rad).
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:lower than ,s Pos and Z2 by the same respective percentages. All
.parameters. besides cl and pl_possess standar§ values.

Thus, each of these plots can be grouped with two corresponding
‘plots from the previous.four figures, all of which have similar
impedance miématches and the same object shapes (e.g., Figures 13a,

2, and 17a comprise a (cylinder) group for which Z. is 5% higher

1

han the standard value). For all three plots, similar values of Z1
f’ZP and also cause similar "inverse—proportional" results. The dif-

and not by Pq- Since all plots in a group of similar values of Zl

1

:e corresponding values of E%ax.Will also be ranked in increasing
der. This finding is comsistent with that of Figures 11 and 12;
e*aﬁalyéeS“differ-in that 'the former is based oun smaller increments
,kld' Also note that values of Eﬁax again tend to be higher in the

herical cases (Figure 18) than in the corresponding cylindrical cases

" As concerns that distribution of heating in these "combination"
res, all plots (of both object shapes) exhibit hot spots within
‘downstream halves.  In addition, hot spots are found in the cylinder

the side boundaries for the situation Z. < Z

1 ?; and at the downstream

b6 ‘dary for Z1‘> ZZ'
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For the remainder of this section, attention is turned to pres-

sure isophase contours. Although heating is the main topic of this

thesis, the programs used to obtain this information can also be used

Lo permit some generalizations (see Section 4) about experimental

‘alternatives for Pressure measurement, for which purposecﬁgz' is

examined. The next six figures, 19 through 24, involve exactly the

same cases as the previous figures, 11 through 16 (the cases of Figures

7 and 18 are excluded, however). But now, isophase contours for<ih2’

are presented, instead of isomagnitude contours for Eﬁ. These plots

are evaluated with regard to two properties mentioned earliier with

Tegard to<ﬁ;g$ in Figures 7 and §: "bowing" and "random" phase distor-

tion, or "wavy" isophase contours——simply termed "distortion" hereafter.

In the first set of curves, Figures 19 and 20, for the cylinder

and sphere, respectively, the radius g again takes on six different

values, so that the quantity kla varies from about 1 to 40 rad. The

ﬁelocity ey is set 5% higher than Cy- The reader is again advised to

ignore plot anomalies at the centers of the objects. As regards bowing,

the significant features of these plots are'a steady increase in bowing

with increasing kla, as shown by the isophase contours curving rela-

ively more (esPecially near the center) per given distance, and a

trong similarity between the .cylinder and the sphere as to the extent

f bowing for a given kla."Distortion is found primarily within the

ownstream halves of both objects, where the pressure magnitude tends

0 be least uniform; is somewhat more extensive for the sphere; and:

enerally becomes more severe as*kia increases.
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' Figures 21 and 22 explore the importance of an impedance mismatch

’wing to acoustic velocity. For each object shape, four values for ¢

1
;ie used, with all other parameters set to standard values. It is

< cz, and upstream (to the left) bowing for c, > Cys furthermore,

owing is more pronounced with larger velocity mismatches. Distortion,

bo, is more extreme in the latter situation, especially with the

The final set of plots, Figures 23 and 24, present pressure iso-

ifferent'(nonstandard) values, with all other parameter values stan-

No bowing is seen in any of the plots, strongly suggesting that

his phenomenon is the result of refraction; the previous figures also

pport this -explanation. On the other hand, distortion occurs for the

ensity mismatches in a manner similar to that of the previous velocity

nismatches. Therefore, it seems likely that distortion owes primarily

“the more general impedance mismatch. . The small discrepancies in the
éree of distortion between the two sets of plots probably are caused,

least in part, by differences in kla.
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4. DISCUSSION AND CONCLUSIONS

One of the original aims of this thesis was to apply numerieal

ethods to solving wave problems. Once such a method is successfully

sed for simple problems, such as the soft- and rigid-object probiems

olved in Sections 2.2, it could, Presumably, be extended to solve

ore complex problems, for which analytical solutions are not known

r cannot be found. It is unfortunate that the general method-of-

id inefficiency in solving for the steady-state solution of a two-

';ménsional hyperbolic differential equation. The general nature of

» ﬂﬁs approach, and its implementation, is well suited to the expansion

{ the problem to include three dimensions and two coordinate systems,

and to account for a temperature distribution, as well. Thus, in the

earch for a new numerical approach which alleviates the former problems

f instability and inefficiency, it must be remembered that flexibility

S-an important feature, so that the numerical method can be truly use-

ul in tackling more complex wave problems. Such flexibility may not

e avéilable in packages‘specifically designed for solving hyperbolic

‘oblems. The FORSTM manual (Carver et al., 1978:29-30) discusses this

sue further, and describes other available packages.
Turning attention to the results found analytically, it is inter-—
esting to compare the plots of estimated viscous power loss in spheres,

resented in Section 3.2.2, with illustrations of i

b electromagnetic (microwave) radiation, provided by Kritikos and

chwan (1975). One minor difficulty with this comparison is the
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polarization of the incident electromagnetic wave, resulting in dis-

tinct "E-" and "H-plane" cross sections of the sphere. This issue is

irrelevant with longitudinal acoustic waves, so that the angle 6 of the

cross—-section plane is arbitrary. Nevertheless, hot-spot locations in

the two problems are significantly similar (heating in the E- and

;H-planes is not markedly different, in general). 1In particular, for

lower values of kla, both types of radiation result in strikingly

similar solutions, with maximum heating at the upstream boundary. For

igher values of kla, for which the solutions are more complex, some

agreement is still seen: maximum heating occurs in areas within the

downstream halves of spheres, again for acoustic and electromagnetic

irradiation. However, these "focused" hot spots are located nearer to

the center of the sphere, in the case of electromagnetic waves.

The trends in the dependence of heating on object shape and pa-

ably owes to the sphere being circular, and thus best suited for
'focusing,” in all cross sections, as opposed to the single circular

T0ss section of the cylinder. Also, higher values of kla and larger

impedance mismatches generally contribute to extremes in heating. The

0rst case presented, in terms of highest maximum Eb, is Figure 144,

in which Eﬁax is more than 30 times higher than the uniform heating

ith a plane wave of the same amplitude as the incident wave. The lat-

8T case occurs with a sphere, where kia = 13.1 rad and the impedance




ratio ZP = 1.25. However, even more extreme situations can be pre-

dicted, based on the previously stated trends (higher kla and/or Zr

- further from unity). The usual location of hot spots in both the

- cylinder and the sphere is at the upstream boundary for lower values

" of kla, and within the downstream halves or at the downstream.boundary

for higher values. 1In addition, heating is often found at the side

-boundaries of the cylinder, for higher kla.

Finally, it is desired to compare the performance of two types of

.pressure detectors, based on information provided by the eariier fig-

ures. The first, a thermal detector, measures temperature and permits

-estimation of heat generation and thus pressure, assuming viscous power

loss is proportional to the square of the pressure. The second type

is a piezoelectric transducer, which measures pressure much more di-

rectly than does a thermal detector, but suffers from errors being

introduced by-phase—averaging of pressure across the face of the trans-

ducer. For simplicity, both devices are assumed to be disc-shaped, the

plane of which is oriented normal to the propagation direction of the

incident wave.

It is obvious that both devices will give nonspecific--basically
meaningless—~results if they. are situated in an area of high nonuniform-

+ity of magnitude, in particular the downstream halves of a cylinder or

In such an area, the piezoelectric transducer suffers from the

~additional difficulty of being subjected to significant "random" phase

distortion. If, on the other hand, the detectors are located in the
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central or upstream portions of the object interiors, the magnitude

and phase distortion will be significantly reduced. Here, a distinc-

tion is seen between the detectors: the main potential error lies

rith the piezoelectric transducer, which may be affected by phase
T

'bowing," most pronounced near the centers of the objects. As can be

inferred from Figures 19 through 24, the piezoelectric transducer will
erform best in situations where it is much smaller than the object
iameter,

so that the phase is relatively constant across the trans—

ucer face, and where velocity mismatches and kl@ are as low as pos-—
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APPENDIX

The following plots, Figures 25 through 102, are full-size ver—
éions of the plots previously presented in groups in Figures 7 through

24, and are provided for closer inspection. The ordering is the same

as for the grouped plots, according to a left-to-right, then down-the-

age. sequence. However, each plot which is included in more than one

grouping is repeated here only for its first respective occurrence.
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