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Abstract 

Quantitative ultrasound (QUS) is a promising technique for non-invasive tissue characterization. 

In this work, the potential of QUS to assess thermal therapy in liver tissue was examined. Specifically, the 

QUS parameters of attenuation slope, effective scatterer size (ESD), effective acoustic concentration 

(EAC), and envelope statistics parameters µ and k were evaluated with respect to their ability to 

discriminate between heated and unheated liver tissue. Two sets of experiments were conducted for this 

purpose. In the first, a series of freshly excised and bisected rat livers was exposed by placing half of a 

lobe in a saline bath at 60 °C for 10 minutes and the other half in 37 °C saline. Each sample was then 

scanned using single-element ultrasonic transducers with a nominal center frequency of 20 MHz. In the 

second experiment, a series of fresh rat livers was exposed to high-intensity focused ultrasound (HIFU) to 

produce a discolored region of permanent damage. These samples were scanned in the area of damage 

before and after HIFU exposure with a 20 MHz single element transducer. Samples in both experiments 

were preserved, and histology slides were generated. 

 In the saline bath experiments, statistically significant differences in attenuation slope, ESD, and 

EAC were observed between heated and unheated samples, while the changes in k and µ were not 

statistically significant. Attenuation slope increased on average from 0.65 dB/cm/MHz in untreated liver 

to 1.1 dB/cm/MHz in treated liver. Statistically significant differences (p<0.05) in ESD and EAC were 

observed using spherical Gaussian and fluid-filled sphere models between unheated and heated sides of 

every sample examined, with ESD decreasing by 34% and EAC increasing by 18 dB with thermal insult. 

A linear model was also considered, and statistically significant increases in slope were observed for all 

samples, as well as statistically significant decreases in intercept for 5 of 7 samples. The mean k 

parameter was found to decrease for 5 of 6 samples, although these changes were not statistically 

significant. Histology slides revealed a decrease of approximately 2.5% in cell diameter with heating. 

The HIFU experiments resulted in an increase in ESD and decrease in EAC in the region of the 

lesion as determined by visual inspection of the sample. The increases in ESD were significant in 3 of 5 

samples for both spherical Gaussian and fluid-filled sphere form-factor models, while the decreases in 

EAC were statistically significant for 4 of 5 samples for these same models. Statistically significant 

differences were observed in spectral slope in 3 of 5 samples and in spectral intercept in 2 of 5 samples. 

Envelope statistics parameters were found to be insensitive to changes with HIFU exposure. Histology 

slides revealed no appreciable change in cell size. 
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 The results of this work suggest that QUS is capable of assessing HIFU and thermal therapy. ESD 

and attenuation slope were found to have the most potential to discriminate between unheated and heated 

liver samples in both saline bath and HIFU experiments.   
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Chapter 1: Introduction 

Diagnostic ultrasound has been in use in the clinic for decades, and yet the full potential of 

ultrasound to non-invasively image and characterize tissues is still being realized. Diagnostic ultrasound is 

intrinsically well-suited for the task of medical diagnosis for several reasons. It is inexpensive, portable, 

safe, and offers high spatial and temporal resolution compared to other imaging modalities in medicine, 

such as MRI and CT. For these reasons, the number of medically significant areas of investigation using 

ultrasound continues to grow. 

Ultrasound is used not only for diagnostic purposes, but also for many therapeutic applications. 

High intensity focused ultrasound (HIFU) was first used in neurological research in the 1950s as a means 

to treat selected parts of the brain while sparing intervening tissues [1]. Since that time, the use of HIFU for 

therapeutic purposes has been greatly expanded, and novel therapeutic medical applications of ultrasound 

are an area of active research. Examples of such therapeutic applications for HIFU are tissue ablation and 

hyperthermia, with the potential for application in several medical treatments. 

Oncology is a particularly important and promising medical application for HIFU, and work in this 

area has been ongoing for several decades. The goal of HIFU in oncology is the ablation of solid tumors or 

the application of hyperthermia to solid tumors, usually in combination with another form of treatment. 

The specialized literature is replete with examples of HIFU for oncological applications [2]. In the 1970s, 

Fry and Johnson [3] first investigated the destruction of tumors in an animal model using HIFU, and found 

that survival rate increased for treated animals. Ter Haar et al. [4] demonstrated that liver tumors in a rat 

model could be destroyed by HIFU without regrowth. Chen et al. [5] demonstrated that continuous 

destruction of tumor cells was possible with appropriately spaced exposure lesions from HIFU, and later 

demonstrated [6] complete destruction of fibrosarcoma liver tumors in vivo with an optimized exposure.   

While the potential therapeutic value of HIFU has been demonstrated, understanding and 

controlling HIFU exposure in vivo has proved to be a challenge. The source of damage to cells from HIFU 

exposure is thought to be a combination of thermal and mechanical mechanisms, with the contribution of 

each depending on the exposure conditions. Hill [7] developed a framework for predicting HIFU lesion 

size and shape considering only a thermal mechanism which demonstrated good agreement with 

experiment. Damianou and Hynynen [8] produced another model using thermal dose as a predictor of 

lesion volume that also only considered thermal effects. Both the authors acknowledge the potential for a 

cavitation mechanism for damage, however, and Hynynen [9] concluded that the cavitation threshold in 

dog muscle was on the order of intensity used for HIFU exposure and could not be excluded from 

consideration. 
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Because of the potential risk of exposure of healthy tissues or uncontrolled cavitation, precise real-

time monitoring and control of HIFU is critical. MRI has been used to monitor HIFU-induced temperature 

changes. McDannold et al. [10] used MRI thermometry for monitoring HIFU application in the brain in a 

monkey model. Hynenen et al. [11] evaluated MRI thermometry in treating fibroadenoma of the breast 

with focused ultrasound. Although MRI has been successfully demonstrated for monitoring temperature 

during focused ultrasound therapy, high equipment cost and instrument compatibility issues limit the 

availability of MRI as an option for HIFU treatment monitoring. 

Ultrasound monitoring of thermal exposure has been investigated actively because of the favorable 

cost and high temporal frame rate of ultrasound compared to MRI. The use of ultrasonic imaging to 

monitor HIFU therapy has been explored by several researchers. Bamber and Hill [12] showed that the 

acoustic attenuation coefficient in tissues is sensitive to temperature. Gertner et al. [13] examined changes 

in ultrasonic backscatter and attenuation in excised beef liver with temperature, and concluded that 

ultrasound monitoring of temperature may be feasible.  Simon et al. [14] have shown that spatial variations 

in speed of sound, and therefore temperature, are estimable from backscattered ultrasound, and several 

authors have developed speed of sound techniques for temperature estimation. Arthur et al. [15] 

investigated changes in backscattered energy with temperature in hyperthermia. Each of the 

aforementioned methods has important limitations. The attenuation coefficient is difficult to measure in 

vivo, although efforts to estimate the attenuation coefficient from backscattered ultrasound are ongoing. 

Speed of sound approaches suffer from artifacts due to patient motion, which can result in apparent heating 

artifacts. Techniques that relate the changes in backscattered energy to temperature have only been 

proposed for hyperthermia applications, and the physical mechanism exploited for temperature estimation 

is less clear than in other approaches.  

Non-invasive assessment of HIFU therapy is also essential for successful therapy application. 

Treatment feedback is essential for establishing treatment efficacy and for determining if further exposure 

is required. Bush et al. [16] assessed the viability of using speed of sound, attenuation coefficient, and 

backscattering coefficient to detect HIFU lesions in pig liver, and concluded that attenuation was the most 

useful. Zheng and Vaezy [17] concluded that HIFU lesions can be visualized by examining the decay rate 

of the backscattered RF amplitude of a sample immediately after HIFU exposure. Elastrography techniques 

[18] have shown potential to differentiate between HIFU lesions and surrounding tissues, as the 

mechanical properties of the HIFU induced lesions differ from those of untreated tissues. Although the 

methods to date are encouraging, an ultrasound-based technique which can be readily employed on a 

clinical device with demonstrated efficacy in vivo is still needed. Because quantitative ultrasound (QUS) 
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techniques have been successfully used for tissue characterization, a goal of this work is to investigate how 

QUS may meet this unsolved challenge of rapid and accurate assessment of HIFU therapy. 

Conventional B-mode ultrasound is limited in its potential for detecting disease and assessing 

therapy because of low contrast between most soft tissues and strong dependence on the skill of the 

ultrasound technician. QUS refers to a set of techniques which make fuller use of ultrasound data by 

removing instrument and operator dependency and forming parametric images. These images are 

hypothesized to quantitatively relate to tissue microstructure and mechanical properties, and may be a new 

source of tissue contrast. QUS techniques have been used to estimate the scattering properties of the tissue 

by analyzing the normalized backscattered power spectrum and the statistics of the backscattered signal 

envelope. From these estimates, spatial maps of estimated properties can be formed to make parametric 

images, and these QUS parametric images may offer a new source of image contrast for ultrasound, 

resulting in improved diagnostic capabilities. QUS therefore presents a promising extension of more 

traditional B-mode imaging in medical applications, with potential applications to the aforementioned 

problems of therapy monitoring and assessment.  

Early work in QUS by Lizzi et al. [19] showed the potential value of analyzing the RF spectrum 

for diagnostic purposes in the eye and liver. The same group later investigated using spectrum analysis for 

detecting prostate cancer [20]. Insana et al. [21] provided a theoretical framework for relating the measured 

power spectrum of a single element transducer to size, number density, and scattering strength of scattering 

from a random medium such as soft tissue. Oelze et al. [22] investigated using QUS techniques to 

differentiate between rodent models of breast cancer, and later extended this work to look at higher 

frequencies [23] in mouse models of breast cancer. These studies concluded that effective scatterer 

diameter (ESD) and effective acoustic concentration (EAC) could be used to differentiate between 

different kinds of tumors. Recently, Mamou et al. [24] showed that QUS scatterer size estimates could be 

used to differentiate between cancerous and cancer-free regions in human patient lymph nodes. The use of 

envelope statistics combined with spectral features was observed to increase the ability of QUS to detect 

and classify cancer in rodent models, as well as improve the detection of metastases in the lymph node 

[25]. Therefore, the use of a larger set of parameters such as spectral features, attenuation, and parameters 

of the envelope statistics should yield improved diagnostic potential. 

QUS research efforts to date include applications for therapy. Lizzi et al. [26] showed that 

spectrum analysis could provide quantitative information related to changes in tumor tissue microstructure 

with hyperthermia and tissue ablation. High frequency ultrasound has been demonstrated to be sensitive to 

cellular changes, such as apoptosis [27] induced by chemotherapy.  
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The goal of this work is to explore the feasibility of using QUS techniques to acutely assess areas 

of damage or lesions in ex vivo tissue caused by simple thermal exposure or by HIFU exposure. This 

includes differentiating treated tissue from untreated tissue and differentiating tissue damage due to 

thermal mechanisms from damage due to both thermal mechanisms and possibly cavitation or other 

mechanical effects. In addition to using QUS to characterize lesions due to thermal damage and possibly 

cavitation, another goal of this work is to elucidate the structures in thermal lesions giving rise to the QUS 

parameters.  

 The next chapters describe the methods and results of experiments designed to quantify changes 

in scattering in liver tissue with thermal insult. Freshly excised rat liver samples were exposed to thermal 

insult in a saline bath, and localized heating was generated in rat liver with HIFU. The results of these 

experiments, as measured by single-element transducer assessment scans, were interpreted with 

established techniques in quantitative ultrasound and compared to histological slides of the samples used 

in each experiment. An important goal was to establish a connection between changes in properties of 

liver tissue estimated with ultrasound and corresponding changes in tissue structure as indicated by 

histological analysis.  
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Chapter 2: Theory 

 

2.1 Introduction  

This section includes theory related to predicting thermal increases from HIFU sources and a brief 

introduction to QUS. In particular, details regarding the estimation of the backscatter coefficient, 

attenuation coefficient, effective scatter diameter (ESD), effective acoustic concentration (EAC), and 

envelope statistics are introduced.  

 

2.2 HIFU Sources and Bio-Heat Transfer  

A thermal mechanism for damage in tissues from focused ultrasound was emphasized in this work. 

The bio-heat transfer equation was originally proposed by Pennes [28], and describes the temperature field 

generated by a heat source in tissue: 

        
 

 
  

  
  

 (1) 

 

where   is temperature,   is thermal diffusivity,   is the perfusion time constant,    is the heat source 

term, and    is the volume specific heat. When heating is produced ultrasonically, ultrasonic absorption is 

considered as the source term, 

                  (2) 

 

where α is the absorption coefficient, I0  is a spatial and temporal average intensity at the source location, 

and z is the distance from the surface of the material to source location. Therefore, by increasing the 

intensity of ultrasound, the rate of change of temperature will also increase for a given level of tissue 

absorption.  

For the case when the source of HIFU is  a single-element transducer, as was used in this work, a 

dynamic spatial variation in temperature results from the spatial variation in field intensity of the source 

and diffusion of heat according to equation (1).  An image of the spatial intensity of a simulated 1-MHz 

transducer due to the focusing and diffraction of the transducer is shown in figure 1, along with the 

associated simulated temperature elevation field generated using equations (1) and (2). The size and shape 

of a HIFU induced lesion will be related to this temperature elevation, which is itself related to the spatial 

distribution of intensity from the diffraction pattern [6, 7]. Perfusion is important in in-vivo ultrasonic 
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heating, but was not considered in this work. The transducer intensity patterns and temperature maps were 

used to predict the extent of the heating field produced by the HIFU exposure. 

 

  

Figure 1 – Simulated intensity (left) and temperature elevation (right) from a 1-MHz source  

  

2.3 Quantitative Ultrasound 

 QUS encompasses several approaches which aim to characterize tissue microstructure or other 

properties through backscattered ultrasound measurements. This study used two parameters based on the 

backscatter coefficient (BSC)—the effective scatterer diameter (ESD) and the effective acoustic 

concentration (EAC)—two parameters derived from the envelope statistics—the k parameter and the µ 

parameter—and the ultrasonic attenuation coefficient. In the following subsections, the BSC, ESD, EAC, 

envelope statistics, and attenuation coefficient are developed and described in terms of backscattered 

signals. 

 

2.3a Backscatter Coefficient and Attenuation Compensation 

The BSC is a measure of the backscattered energy of a sample as a function of frequency, and is 

hypothesized to provide information related to the underlying structure of a sample. The backscatter 

coefficient is defined as the differential cross section per unit volume evaluated at an angle of π, which 

corresponds to the backscatter orientation, and can be represented as: 

    
       

 
 (3) 
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where V  is the volume of scatterers, and Φ k  is the complex scattering amplitude [20].  

The BSC can be estimated from backscattered RF data through the normalized power spectrum. 

The normalized power spectrum for a region of interest (ROI) is calculated from the average of the 

normalized power spectra from different scan lines in the ROI: 

     
 

 
        
 

   

 (4) 

 

where S(k) is the normalized spectrum of a particular scan line, and N is the number of scan line segments 

in each ROI. In this case, normalization refers to the process of removing instrument dependency from the 

measurement, and is achieved by compensating with a reference spectrum from a planar reflector or a 

reference phantom. The signal from the reference will correspond to the same spatial location with respect 

to the transducer as the ROI in the sample. In the case of using a planar reflector as the reference, the 

normalized power spectrum is: 

                    
     

     
  (5) 

 

where γ is the reflection coefficient of the planar reflector, Sm is the estimated spectrum from the sample, 

S0 is the measured reference spectrum, α is the difference in attenuation coefficients between the sample 

medium and the reference medium, and d is the distance to the ROI. 

The BSC can be computed as follows: 

        
  

 

           
 (6) 

 

where W(k) is the normalized power spectrum defined in (4), A0 is the transducer surface area, zc is the 

average distance from transducer to ROI, and R1 is the on-axis distance between the transducer and the 

closest surface of the ROI.  

The problem of relating frequency-dependant scattering and attenuation to the measured signal 

can be expressed as: 
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                         (7) 

  

where H(f) is the system-dependent impulse response and electronic transfer function, and S(f) and A(f) 

are the frequency-dependant sample scattering function and sample attenuation function, respectively. 

System dependency can be removed by using a reference measurement, while the scattering and 

attenuation functions are tissue-dependent and contain useful information for tissue characterization. 

 

2.3b Effective Scatterer Diameter and Effective Acoustic Concentration 

 Two QUS parameters, ESD and EAC, can be estimated from the BSC. The ESD represents a 

correlation length related to the size of sub-resolution scattering structures. EAC represents the product of 

the mean square fluctuation in acoustic impedance between a sub-resolution scatterer and the background 

times the volume fraction of scatterers. ESD is estimated by solving a least-squares problem of comparing 

BSCs based on measurements with BSCs from theory. For a medium made of many scatterers per 

resolution cell with random spatial locations, the theoretical BSC can be described through form factors 

[17]. The form factor is defined as: 

            (8) 

 

where σb is the backscatter coefficient of the sample and σ0 is the backscatter coefficient of a point 

scatterer. The form factor is a function of the ultrasonic frequency and the size of the scatterers giving rise 

to the backscattered signal. ESD is designated as the argument minimizing the difference between the log 

of a model form factor and the log of the form factor derived from measurements [17]. 

    
      

 
      

    

         
      

 

   

 (9) 

 

where W(k) is the normalized power spectrum, Fm(k,d) is the model form factor as a function of size and 

frequency, and K is the maximum frequency considered.      is the average of                over all 

frequencies. EAC is then determined as a scaling factor such that the estimated form factor is normalized 

to unity for k = 0. 
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The spherical Gaussian form factor was used in this work [29], as well as the fluid-filled sphere 

form factor [30]. The spherical Gaussian form factor represents a scattering particle with a gradual change 

in impedance compared to the impedance of the background material, and has an effective radius related 

to the fall-off of the impedance distribution. The spherical Gaussian form factor is defined as: 

                    
     

 

 (10) 

 

The fluid-filled sphere form factor represents a spherical scattering particle with a clearly defined 

boundary and surrounded by a uniform medium, and is represented as: 

          
 

   
        

 

 (11) 

 

where a is the particle radius and     is the first order spherical Bessel function of the first kind. 

 

2.3c Envelope Statistics 

 Envelope statistics parameters µ and k were computed for the homodyned K distribution. The 

parameter µ is a measure of the number of scatterers per resolution cell, and the k parameter is the ratio of 

the coherent to diffuse signal, which can be used to describe the periodicity of a sample. The PDF of the 

homodyned K distribution is defined as: 

                   
 

 

    
    

  
      (12) 

 

where     is the 0th order Bessel function of the first kind, s2 is the coherent signal energy, and    is the 

diffuse signal energy. The k parameter is computed as k = s/ . An efficient method for 

computing the best-fit parameters for a measured signal envelope was used [31].  
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2.3d Attenuation Coefficient 

 The attenuation coefficient is required for estimation of BSC and QUS parameters derived from 

BSC. The attenuation coefficient is also valuable for tissue characterization. A common approach for 

estimating the attenuation of a sample is insertion loss (sec. 3.6). Insertion loss measurements, however, 

require placement of a known reference reflector in the depth of field of the imaging transducer, which is 

impractical in most in vivo situations. The attenuation coefficient can be estimated from backscattered 

ultrasound measurements, and attempts have been made to use these estimates for tissue characterization 

[32]. In particular, the backscatter-based attenuation estimates have been considered in studying cervical 

ripening [33]. Results to date, however, suffer from large estimate variance and relatively poor spatial 

resolution with respect to HIFU lesion size. In this work, only insertion-loss attenuation estimates were 

considered. 
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Chapter 3: Experimental Setup 

 

3.1 Introduction 

The experimental data from this work consists of single-element transducer scans of freshly 

excised rat liver tissue. A portion of each tissue sample was heated either in a saline bath or using an 

amplified highly focused single-element transducer (HIFU). The data acquisition procedures for these two 

methods were slightly different, owing to their distinct experimental setup, as described in sections 3.4 and 

3.5. Procedures common to both experiments and prerequisite to their execution are found in sections 3.2 

and 3.3. Section 3.6 describes the technique of insertion loss, which was used both as a stand-alone 

parameter for tissue characterization and as part of the later data processing for QUS estimates. Section 3.7 

describes the use of histological slides for the evaluation of liver tissue. 

 

3.2 Sample Preparation Procedures 

Liver samples were excised from Sprague-Dawley rats within 30 minutes of euthanization to avoid 

sample degradation. These rats were used in other approved studies in the same laboratory, and the 

experimental protocol was approved by the Institutional Animal Care and Use Committee of the University 

of Illinois at Urbana-Champaign and satisfied all university and National Institutes of Health rules for the 

humane use of laboratory animals. Liver samples were cut into lobes, and were either heated in a saline 

bath by simply setting them on a planar surface or inserted into agar-based phantoms for HIFU exposure. 

Agar phantoms containing a single lobe of rat liver were constructed for HIFU experiments. First, 

2.5 g of noble agar was added to 100 mL of deionized water and stirred using a magnetic stirrer. This agar 

mixture was then heated in a microwave oven for a total of 60 seconds, removed, and stirred while cooling 

using a magnetic stir bar. Once the mixture had cooled to approximately 45 °C, a six-well plate was then 

filled with the agar. Freshly excised lobes of rat liver were then trimmed and added to the agar wells. The 

well holders containing the liver and agar were stored at 4 °C for at least 30 minutes to allow the agar to 

harden. No visible changes in the liver were observed due to embedding in agar. An identical procedure 

was followed to make agar-only phantoms for calibration and alignment purposes, without the step of 

adding the tissue sample. 
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3.3 Basic Scanning Procedures 

Single-element transducer scans were performed on all liver tissue samples. Transducers were 

excited using an Olympus NDT Panametrics 5900 pulser-receiver connected to a 14-bit PC A/D card with 

250 MHz sampling. Recorded scan lines were spaced approximately half a beam width apart (125 μm for 

20 MHz f/3 and 150 μm for 20 MHz f/4) and consisted of at least 100 time averages for each scan line. 

Transducer positioning was achieved using a Daedal positioning system controlled by a PC running 

custom LabView software. A reference scan was taken for all data sets collected using the same equipment 

and settings. Reference scans consisted of the measured reflection from a planar Plexiglas reflector at 

normal incidence. Reference waveforms were obtained with the transducer positioned such that the 

measurements were taken over the depth of field of the transducer with a step size of 100 μm for the 20-

MHz transducers. 

For HIFU exposures, a Sonix RP array system was used for alignment and assessment of HIFU 

exposures. Data were collected during exposure by synchronizing the Sonix RP array transducer (L14-5) 

with the excitation signal generator for the HIFU transducer such that the data were collected between 

periods of HIFU exposure at approximately 30 frames per second. Figure 2 illustrates the timing of 

exposure and data collection. The measurements continued for several seconds after HIFU exposure 

ceased. A wire thermocouple (Type T, Omega) was used in several of the measurements to monitor 

temperature changes. Measurements from a well-characterized reference phantom were taken with the 

Sonix RP for calibration purposes and using same settings as used in data collection.  

 

 

 Figure 2 – Timing of HIFU exposure and data collection 
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The array transducer (L14-5) was fixed in space with respect to the HIFU transducer such that the 

field of view of the array overlapped with the HIFU focus. The array probe and single-element HIFU 

transducer were aligned by creating a single lesion in an agar-only phantom with the HIFU system. This 

lesion was visible in the display of the Sonix RP system, as the agar melted and left a void, which appeared 

as an anechoic region on the B-mode display. The array probe was centered laterally on the lesion, and the 

focus was adjusted axially to match the lesion location.  The array transducer remained fixed in space with 

respect to the HIFU transducer using a clamp holder. The location of the lesion was then marked on the 

Sonix RP display screen, and subsequent liver samples were placed with respect to the array such that the 

intended target of the sample appeared at the marked focus on the display. A diagram of this setup is 

shown in figure 3. 

 

 

Figure 3 – HIFU exposure experimental setup 
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3.4 Saline Bath Experiments 

HIFU exposure is known to cause damage in tissue by both thermal and mechanical mechanisms, 

depending on exposure conditions and the state of the tissue.  If a tissue has many gas nucleation sites, it 

is more likely that high intensity ultrasonic fields can cause cavitation resulting in enhanced tissue 

damage.  In order to isolate the effects of thermal damage from mechanical damage due to cavitation, rat 

liver samples were treated in a saline bath at 60 °C for 10 minutes. This exposure was chosen to ensure 

that each sample was uniformly treated. The liver sample was cut in half lengthwise, and half of the 

sample was treated as described, while the other half was placed in saline at 37 °C (fig. 4).  This treatment 

regime was chosen to simulate the thermal effects and not mechanical effects of a controlled HIFU 

exposure. The treatment resulted in a visible change in color and tangible stiffening of the treated liver 

sample.   

The sample halves were pinned to a thin Plexiglas holder and placed in a tank of degassed saline 

at 37 °C on top of a Plexiglas reflector (fig. 4). The samples were scanned with a 20-MHz single-element 

transducer. The scans axes and dimensions were chosen to give several scan slices containing both heated 

and unheated sections. Figure 5 shows a B-mode image constructed from a saline bath heating experiment 

data set. The focus of the transducer was positioned to maximize the useful signal, typically placed 

slightly below the center of the sample in the axial direction. Insertion loss and backscattered RF 

measurements were obtained from both halves of each sample (sec. 3.3 and 3.6). Histology slides were 

made from these specimens, as discussed in section 3.7. 
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Figure 4 – Saline bath heating experiment  

 

 

Figure 5 – B-mode image of heated (left) and unheated (right) rat liver sample sections 

 

3.5 HIFU Experiments  

Liver samples were exposed to a single-element 1-MHz (f/1.1) HIFU transducer to form lesions 

that were visible upon sample inspection. The HIFU transducer was powered by an ENI A150 55 dB 

power amplifier and excited by an Agilent Technologies 33120a arbitrary waveform generator. Excitation 

amplitude and duration of the exposure were chosen based on trial and error such that lesions were formed 
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which were visible upon sample inspection. Exposure parameters varied from 10-30 seconds with a 50% 

duty cycle and peak intensity between 19 and 2500 W/cm2, as measured in degassed water using a 0.75 

mm Precision Acoustics needle hydrophone (HPM075). The nominal sensitivity of this hydrophone was 

from 1 kPa to 20 MPa and from 10 kHz to 60 MHz. Because of sample attenuation, the in situ intensity 

was less than the peak intensity measured in water. Lesions were generally formed approximately 1.5 cm 

from the front surface of the sample (fig. 6). 

 

 

Figure 6 – Photograph of HIFU lesion in rat liver 

 

Ultrasound data were collected during the exposure by synchronizing the RF capture of the Sonix 

RP probe with quiet periods between HIFU tone-bursts.  Increased echogenicity at the focus after HIFU 

exposure of the liver was sometimes observed in B-mode images from the Sonix RP, and more frequently 

in the cases of higher intensity and longer exposure.  

Liver samples were scanned with a 20-MHz single-element transducer before and after HIFU 

exposure. Although the samples may have moved slightly with respect to the holder, the before and after 

scans were taken in the same position with respect to the positioning system, and correlation between the 

before and after images was generally good based on visible inspection of the various features in the liver 

(shape, blood vessels, etc).  However, HIFU lesions were not generally clearly visible in the B-mode 

images generated from the liver scans. Liver samples were fixed in 10% formalin for 2-3 days, and sliced 

and photographed to establish the location of the lesions within the liver. In this way, the B-mode images 

were manually registered with photographs of liver slices to select lesion ROIs for data processing (fig. 7). 
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Figure 7 – Sample photograph (left) and B-mode with ROI selection (right) 

 

 

3.6 Insertion Loss Measurements  

Insertion loss measurements were performed for liver samples in the saline bath heating 

experiments in order to estimate changes in attenuation coefficient with heating. A pulse-echo single-

element transducer measurement of the reflection from a planar reflector was obtained with the sample 

placed between the transducer and the Plexiglas. Several such measurements were acquired over the same 

lateral region as the backscatter measurements described in section 3.3. A reference measurement was 

taken in the starting location of this scan with the sample and holder removed, but all other settings 

maintained. Figure 8 shows reflected signals from the plate with and without the sample between the plate 

and transducer. 

 

Figure 8 – Sample and reference attenuation measurements 
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An insertion loss estimate for the attenuation coefficient   from each RF scan line was computed 

as: 

   
                              

   
 (13) 

 

where Pr(f) is the power spectrum of the windowed scan line from the reference measurement, Ps(f) is 

the power spectrum with the sample in place, and d  is the sample thickness as a function of lateral 

position. Transmission losses were assumed to be negligible in these measurements.  

The sample thickness was estimated ultrasonically using time of flight and the known speed of 

sound of the saline bath. Specifically, the distances from transducer to sample (d1) and sample to 

Plexiglas (d2) were estimated from the measured time corresponding to the interface reflections and the 

speed of sound in water. The sample thickness was then found as the difference between the total distance 

from transducer to Plexiglas (d3) and the distance d1 + d2 as: 

                             (14) 

 

3.7 Histological Analysis  

Histological analysis is a standard procedure used in pathology to characterize biological 

samples. In this work, liver samples were preserved by fixation in 10% formalin for at least 3 days, after 

which they were stained, mounted in paraffin, and sliced to create microscope slides. The samples were 

stained using hematoxylin and eosin (H&E), which are commonly used in medical diagnosis. H&E is a 

sequence of two agents which stain nuclei blue and protein structures shades of red. Both HIFU and saline 

bath treated samples were processed for histology, along with corresponding untreated regions and 

samples in order to determine the extent of structural change induced by HIFU and saline bath heating. A 

sample histology image is shown in figure 9. 
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Figure 9 – Histology slide of untreated rat liver sample section 
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Chapter 4: Experimental Results 

 

4.1 Saline Bath Experiment 

 As described in section 3.4, seven rat liver specimens were treated in a saline bath. The samples 

were bisected, and half were treated at 60 °C for 10 minutes, with the other half kept at 37 °C. The 

samples were then scanned using a 20-MHz single-element focused transducer. Insertion loss 

measurements were performed to obtain accurate estimates of sample attenuation, and estimates of 

attenuation were found to differ significantly between heated and unheated cases. Co-incident to the scan 

location of the insertion loss scans, backscattered ultrasound scans were performed over several image 

slices per sample. The scans encompassed both unheated and heated sections and were used to generate 

backscatter coefficient, ESD, EAC, and envelope statistics estimates. 

4.1a Insertion Loss Estimates 

 Insertion loss measurements revealed substantial increases in attenuation estimates with heating 

in the saline bath experiment. Specifically, the mean attenuation estimate across all samples for unheated 

samples was 0.65 dB/cm/MHz, while the mean for the heated samples was 1.1 dB/cm/MHz, 

corresponding to an increase of 69%. Figure 10 summarizes these estimates across seven samples and 

demonstrates a clear separation between heated and unheated cases.   

A wide range of values for attenuation in mammalian liver can be found in the literature. Parker 

[34] found an average attenuation value of 0.4 dB/cm/MHz in bovine liver in the range of 1-6 MHz, while 

Goss et al. [35] report a value of 0.7 dB/cm/MHz over a similar frequency range while considering a 

larger number of mammals, including mice. The variation in values of attenuation in liver tissue has been 

attributed to different measurement techniques, difficulty in measuring sample thickness, and different 

sample preparation and handling procedures. The estimates in this work fall within the range of values in 

the literature for unheated samples. Heating complicates the reporting of attenuation values by the 

addition of experimental variables of exposure time and temperature, and a direct comparison with the 

literature for the heated case was not attempted. However, substantial increases over unheated values have 

been reported [13], a fact which agrees with the results estimated in this work. 
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Figure 10 – Attenuation estimates from insertion loss measurements 

 

4.1b Backscatter Coefficient Estimates 

The BSC provides a measure of the backscattered energy of a sample as a function of frequency, 

and is valuable as a tool for tissue characterization. In this work, the BSC was estimated from heated and 

unheated halves of rat liver by computing BSC estimates from independent ROIs. A good agreement 

across samples and noticeable separation between heated and unheated cases were observed, as shown in 

figure 11. BSC estimates were calculated assuming an attenuation of 0.65 dB/cm/MHz and 1.1 

dB/cm/MHz for unheated and heated regions, respectively, and according to the insertion loss 

measurements of the same samples (section 4.1a). The BSC curves were then parameterized (i.e., ESD 

and EAC) according to different scattering models, yielding a geometric interpretation of tissue structural 

changes occurring due to thermal insult. For example, the larger slopes in the BSCs observed for the 

heated livers correspond to smaller ESD estimates. 
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Figure 11 – Backscatter coefficient of heated and unheated livers 
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4.1c ESD and EAC 

 ESD and EAC are model-based parameters derived from the frequency-dependent backscattered 

signal, essentially collapsing the BSC curve into two quantities with a physical interpretation. Figure 12 

below shows example QUS parametric images of liver samples from the saline bath experiment using a 

spherical Gaussian form factor. Differences in estimates of these parameters can be observed in the 

figures by comparing the heated and unheated cases. 

   

 

 

Figure 12 – Parametric images: ESD (left) and EAC (right) (spherical Gaussian form factor) 

 

 Data sets were computed from non-overlapping ROIs for statistical analysis, with several image 

slices per sample. Care was taken to exclude blood vessels or other heterogeneous structures from 

analysis. Analysis of variance (ANOVA) was performed to test the null hypothesis that the unheated and 

heated estimates were the same for each liver sample. 

 The spherical Gaussian and fluid-filled sphere form factors were utilized in this work, along with 

a linear model parameterized by spectral slope (LS) and spectral intercept (LI). Estimated BSCs versus 

frequency data were fit using each of these models, and statistics based on these estimated quantities were 

computed for each sample and model combination. The models were compared in terms of mean-square 

error (MSE) between the best-fit model and measured data, as well as the statistical significance of 

differences, if any, between heated and unheated estimate data sets. Figures 13 and 14 show parametric 

images generated from the same sample image slice for all three of these models. 
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Figure 13 – (Clockwise from top left) B-mode, ESD (Gaussian), LS (linear), and ESD (fluid-filled sphere) 
images of a rat liver sample 
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Figure 14 – (Clockwise from top left) B-mode, EAC (Gaussian), LI (linear), and EAC (fluid-filled sphere) 
images of a rat liver sample 

 

Figure 15 and figure 16 show plots of mean ESD and EAC versus sample number for all samples 

for the spherical Gaussian and fluid-filled sphere models, respectively, and figure 17 shows LS and LI for 

the linear model. Unheated ESDs were larger (statistically significant difference, p<0.05) than heated 

ESDs, and unheated EACs were smaller than heated EACs (statistically significant difference, p<0.05) 

for both the spherical Gaussian and fluid-filled sphere form factors. For the linear model, unheated slope 

estimates were smaller than heated slope estimates at p<0.05 for all samples, and unheated intercept 

values were larger (p<0.05) for 5 of 7 samples. The variance was extremely large for heated EACs using 

spherical Gaussian and fluid-filled sphere models. This can be attributed to the small variations in 

estimates of size (ESD) leading to very large estimates of EAC. 
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Figure 15 – Mean of ESD and EAC versus sample number (spherical Gaussian form factor) 

 

 

Figure 16 – Mean of ESD and EAC versus sample number (fluid-filled sphere form factor) 
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Figure 17 – Mean of ESD and EAC versus sample number (linear model) 

 

 

Scatter plots of EAC vs. ESD (figs. 18, 19) and LS vs. LI (fig. 20) show separation between 

heated and unheated samples. The ESD and EAC parameters appeared to be well correlated, suggesting 

that a single parameter may provide sufficient means to distinguish between heated and unheated 

samples. Slope and intercept appeared to be correlated for the linear model as well.  The scatter plots for 

the spherical Gaussian and fluid-filled sphere form factors have very similar shape, but size estimates for 

each model are slightly different. 
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Figure 18 – Scatter plot of liver data estimates (spherical Gaussian form factor) 

 

 

Figure 19 – Scatter plot of liver data estimates (fluid-filled sphere form factor) 
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 Figure 20 – Scatter plot of liver data estimates (linear model) 

 

Figures 21 and 22 show plots of the average of all BSC measurements along with the best-fit 

theoretical estimates to the average BSC for each model. Table 1 lists the MSE values for each model 

compared to measured data. The Gaussian and fluid-filled sphere models produced very similar curves 

and MSE values, while the linear model had the lowest MSE for both heated and unheated measurement 

data. 
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Figure 21 – Measured and modeled BSC (unheated samples)  

 

  

Figure 22 – Measured and modeled BSC (heated samples)  
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Table 1 – MSE of measured versus modeled BSC 

Form 

Factor 

Mean-Squared Error (MSE) 

Unheated Heated 

Gaussian 828.7 998.5 

Fluid-filled 

sphere 
1293 1085 

Linear 307.9 93.80 

 

4.1d Envelope Statistics 

 Envelope statistics parameters µ and k were computed with the ROIs used for ESD and EAC 

estimates in section 4.1c. Figure 23 shows a plot of the mean of the envelope statistics parameters, and 

figure 24 shows a scatter plot of µ versus k. The separation for µ and k between heated and unheated 

samples was less pronounced than for ESD and EAC, although some separation in the k parameter was 

apparent. Although k appears to decrease with heating for most samples, the difference in k between 

heated and unheated cases was not statistically significant at the p<0.05 level for any sample.  

 

Figure 23 – Mean of envelope statistics parameters 
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Figure 24 – Scatter plot of envelope statistics parameters 

 

4.1e Histological Analysis 

 Histological slides were created from a saline bath experiment specimen after fixation and H&E 

staining, as described in section 3.7. Figure 25 shows a digitized slide image from an unheated section of 

the liver specimen, and figure 26 shows a heated specimen. In the figures, the round, purple structures are 

cell nuclei. The extent of a single liver cell is more clearly observed in figure 26 (heated), where the 

spacing between the lighter purple cell cytoplasm appears. These elongated gaps are referred to as 

sinusoids, and are the capillaries which provide blood to the cells. An apparent shrinking of the liver cells 

in the heated versus unheated case was observed in regions adjoining the tissue border and around the 

blood vessels, which was consistent with the ESD estimates derived from measurements from heated and 

unheated livers, which had smaller ESD values for heated samples. In addition, significant damage to the 

lining of the larger blood vessels was noted, suggesting that heating in this fashion may affect the tissue 

blood supply. Figure 27 shows a histogram of estimated cell diameter for heated and unheated sample 

histology slides. Cells diameter estimates correspond to the largest dimension of a cell, as measured 

manually from a print of the histology image. The average cell diameter for the unheated cells was 22.7 ± 

1.9 µm, while the average diameter for the heated cells was 22.1 ± 2.0 µm. The average cell nucleus 

diameter was 9.5 ± 1.0 µm for unheated cells, and 9.9 ± 0.6 µm for heated cells. 
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Figure 25 – Histology slide of unheated liver sample (40X) 

 

 

Figure 26 – Histology slide of heated liver sample (40X) 

.  
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Figure 27 – Histogram of liver cell diameter estimated from histology 

 

4.2 HIFU Experiments 

 A series of HIFU experiments were conducted to assess the extent to which induced damage in 

tissue was measureable with ultrasound. Liver samples were exposed to a variety of intensities and for 

durations varying from several seconds to minutes. Changes in average BSC were estimated from regions 

of the samples designated as corresponding to visible lesions from photographs. In addition, difference 

images for QUS parameters of ESD and EAC were generated to compare the extent of changes in the 

lesion region to those in the remainder of the sample. It is important to note that attenuation changes were 

neglected in this analysis because of the difficultly in estimating a spatially-varying attenuation map from 

the measurements that were taken. Uniform attenuation changes could not be assumed, as was done in the 

saline bath experiment, and so all estimates were generated assuming an unheated value of attenuation 

(0.65 dB/cm/MHz), which was considered to be an important source of error. Table 2 lists the sample 

exposure conditions for each of the samples shown. 
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Table 2 – HIFU exposure parameters 

Sample # 

Exposure Parameters 

Duration (s) 
Peak 

Intensity(W/cm
2
) 

B-mode 

Visible? 

R3163 30 s 2500  Y 

R3170 30 s 2500 N 

R3193 10 s 1500 N 

R3410a 120 s 19 N 

R3410b 120 s 19 N 

 

4.2a Backscatter Coefficient Estimates 

 BSC estimates were processed for the same spatial ROIs before and after exposure to HIFU.  The 

ROIs were selected based on photographs of each sample and correspond to the area of visible 

discoloration due to heating. Because the samples were encased in agar, attenuation through the agar was 

assumed to be 0.1 dB/cm/MHz, where present. Figure 28 shows the average BSC for each individual 

sample, both before and after exposure to HIFU, excluding the sample where brightening occurred in the 

B-mode image, resulting in a dramatic change in BSC. Figure 29 shows the average of the BSCs of all 

liver samples exposed to HIFU, as well as the average of the BSCs of all samples in the saline bath 

experiment. The slope of the average BSC of heated HIFU samples appeared to closely match the slope of 

the average BSC of the unheated cases. The slope of the average BSC of the heated saline bath cases was 

higher, suggesting that the heated HIFU samples may be undercompensated for attenuation. 
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Figure 28 –Backscatter coefficient of rat liver samples exposed to HIFU  

 

Figure 29 – Average backscatter coefficient of all rat liver samples (thermal HIFU and saline bath) 
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4.2b ESD and EAC 

The QUS parameters of ESD and EAC were evaluated in a similar manner to the saline bath 

experiments, using three models to develop estimates. Figures 30, 31, and 32 show the mean and variance 

of estimates for the spherical Gaussian, fluid-filled sphere, and linear models, respectively. ESD was 

found to increase with heating, while EAC decreased. Scatter plots (figs. 33-35) for each of these form 

factors do not show the clear separation that was present in the saline bath heating results, suggesting that 

variation between samples was as large as, or larger than, estimated changes in QUS parameters. Also, 

unlike the saline bath experiment, the area of effect from HIFU exposure was not uniform, and for a 

particular ROI, the BSC parameters could consist of contributions from scatterers with a variety of 

properties. Still, statistically significant differences (p<0.05) in QUS estimates were found for several 

sample/parameter combinations according to the results shown in tables 3 and 4. 

 

Figure 30 – Mean of QUS parameters (Gaussian form factor) 
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Figure 31 – Mean of QUS parameters (fluid-filled sphere form factor) 

 

 

Figure 32 – Mean of QUS parameters (linear model) 
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Figure 33 – Scatter plot of QUS parameters (spherical Gaussian model) 

 

 

 

Figure 34 – Scatter plot of QUS parameters (linear model) 
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Figure 35 – Scatter plot of QUS parameters (fluid-filled sphere model) 

 

Table 3 – ANOVA for HIFU samples 

Sample # 

p < 0.05 

Gaussian 

ESD 

Fluid-filled 

sphere ESD 
Linear Slope 

R3163 Y Y Y 

R3170 Y Y Y 

R3193 N N N 

R3410a N N N 

R3410b Y Y Y 
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Table 4 – ANOVA for HIFU samples 

Sample # 

p < 0.05 

Gaussian 

EAC 

Fluid-filled 

sphere EAC 

Linear 

Intercept 

R3163 Y Y Y 

R3170 Y Y N 

R3193 Y Y Y 

R3410a N N N 

R3410b Y Y N 

 

4.2c Envelope Statistics 

Envelope statistics parameters were generated for HIFU liver data sets, and compared before and 

after HIFU exposure in ROIs correlated with lesions based on visual inspection of each sample. Both µ 

and k parameters were relatively insensitive to changes with heating, as shown in figures 36 and 37. 

Statistically significant differences (p<0.05) between before and after were observed for only 1 of 5 

samples for both µ and k. 

 

 

Figure 36 – Mean of envelope statistics parameters 
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Figure 37 – Scatter plot of QUS envelope statistics parameters 

 

4.2d QUS Difference Images 

 Ultrasound scans were performed on liver samples both before and after exposure to HIFU in the 

focal region of the HIFU transducer. QUS images were generated for both the before and after cases with 

overlapping ROIs to show a smoother picture, and difference maps were generated to show changes in 

QUS parameters with heating, allowing a comparison of changes in the lesion compared to unexposed 

areas.  

 It has been suggested [36] that brightening of B-mode images during HIFU exposure may be 

linked to cavitation activity. In order to maintain as valid as possible a comparison between HIFU 

exposure and saline bath heating, HIFU exposures and sample handling procedures that avoid such 

brightening were sought, although this technique did not rule out the presence of cavitation. Table 2 lists 

the exposures which were found to produce a substantial brightening that was visible on a B-mode scan 

after the exposure.  As expected, QUS images for these samples displayed significant changes with 

respect to HIFU exposure, as this brightening corresponded to a significant change in estimated scattering 

properties. Figure 38 shows photographic, B-mode, and QUS images of such a sample. 
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Figure 38 – (Clockwise from top left) photograph, B-mode image, ESD, and EAC images of HIFU rat liver 
sample 

  

An increase in ESD and decrease in EAC appeared in the QUS images in figure 38. It was noted 

that the increase in ESD appeared close to the center of the lesion as determined from the photograph, 

while the decrease in EAC was observed below the center of the lesion. This inconsistency between 

changes in the saline bath and HIFU experiments may be explained by the potential role of cavitation, by 

uncompensated changes in attenuation, or by the non-uniform creation of a lesion from HIFU. As can be 

observed in the sample photograph, a small cavity was formed at the center of the lesion, suggesting the 

tissue was completely annihilated. In order simulate the saline bath experiment more closely, HIFU 

exposures were performed which demonstrated no substantial brightening in assessment B-mode images 

in the area of the visible lesion. The areas of color outside the lesion are due to slight de-correlation 

between before and after images. 
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Figures 39 shows a sample that was exposed under conditions similar to those of the sample of 

figure 38, but that showed no significant brightening or formation of a cavity. An increase in ESD and 

decrease in EAC was also observed for this sample. Figure 40 shows a third example exposed under very 

different conditions (R3140b in table 2) which may have more closely simulated a purely thermal 

exposure. Again, an increase in ESD and decrease in EAC was observed. Figure 41 shows the measured 

temperature history for this exposure by a wire thermocouple placed approximately 2 mm from the center 

of the focus. 

 

 

  
 

Figure 39 – (Clockwise from top left) photograph, B-mode image, ESD, and EAC images of HIFU rat liver 
sample 
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Figure 40 – (Clockwise from top left) photograph, B-mode image, ESD, and EAC images of HIFU rat liver 
sample 
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Figure 41 – Temperature history of HIFU exposure  

 

4.2e Histology Images 

 Histological slides were created from liver samples exposed to HIFU. Figure 42 shows a digitized 

slide image at low magnification (4X) which shows a visible ring of lighter color, corresponding to the 

location of the circular lesion. At higher magnification (40X), an effect similar to that observed in the 

histology slides taken from the saline bath heating experiments was observed (sec. 4.1d), where the 

sinusoids appear dilated. Figure 43 shows an unexposed sample region, which appears darker and to have 

larger cells than the heated sample region (fig. 44), which shows enlarged sinusoids. Figure 45 shows a 

histogram of cell size for heated and unheated regions of a liver sample corresponding to figures 44 and 

45, respectively. As was the case for the saline bath experiment histology slides, cells diameter was 

estimated from a print of the histology image, and estimates correspond to the largest dimension of a cell. 

The average cell diameter for the unheated cells was 22.5 ± 1.9 µm, while the average cell diameter for 

the heated cells was 22.4 ± 2.4 µm. The average cell nucleus diameter was 8.8 ± 1.5 µm for unheated 

cells, and 7.9 ± 0.9 µm for heated cells. 
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Figure 42 – Histological slide image of HIFU-exposed liver sample (4X, arrows indicate threshold of treated 
region) 

 

 

 

Figure 43 – Histological slide image of HIFU-exposed liver sample (unexposed region, 40X) 
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Figure 44 – Histological slide image of HIFU-exposed liver sample (exposed region, 40X) 

 

 

Figure 45 – Histogram of liver cell diameter estimates from histology 
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Chapter 5: Conclusions and Future Work 

 This work explored the feasibility and practical limitations of using QUS to assess thermal 

therapy in general, and HIFU therapy in particular. Although changes in scattering and attenuation in liver 

with heating have been previously examined [12], this work is novel in its use of a higher frequency (20 

MHz) and model-based QUS estimates. A series of saline bath heating experiments were conducted as an 

important preliminary step in determining the extent to which changes in liver tissue properties with 

heating could be measured ultrasonically. The saline bath experiments yielded substantial changes in 

estimates of sample attenuation with heating, as well as significant and consistent changes in BSCs in 

liver with heating. While the former has been shown previously and agrees with existing literature, the 

changes in BSC have not been previously documented. Although macromolecular changes that may 

contribute to increased absorption and thereby sample attenuation in heated samples could not be verified 

histologically, scattering models applied to the measured changes in BSCs yielded a decrease in ESD with 

heating. This decrease was consistent with changes in cell size estimated from histology for the saline 

bath experiment, where the estimated size of the cells decreased by 2.5%. Estimated size of the cell nuclei 

increased by 4%, however. Expanded histological analysis will be necessary to understand the changes in 

cell size that may occur with heating, specifically taking into account different functional regions of the 

liver.  

 Although the average change in ESD with heating was consistent with histological evidence, the 

spherical Gaussian and fluid-filled sphere models did not appear to be a close fit to the averaged BSC 

estimated in the saline bath experiments. In fact, in both unheated and heated cases a linear model (in 

logarithmic space) had a lower MSE when compared to the average measured BSCs than both these 

models. An important future direction of this research will be to explain this discrepancy and to develop a 

more realistic model for scattering from liver tissue, if needed.  

Envelope statistics parameters were considered as a means to discriminate between unheated and 

heated liver samples. In the saline bath experiment, the k parameter, which is a measure of the ratio of 

coherent to diffuse scattering, yielded contrast between the heated and unheated samples, while the µ 

parameter had no discernable change. Histological evidence does not directly explain these findings, and 

while the k parameter was found to consistently decrease in heated samples, the differences were not 

statistically significant within any single sample.  

 Whereas the saline bath experiments were designed to provide insight into how liver tissue 

changed with thermal insult, HIFU experiments were conducted to incorporate more realistic conditions 

with respect to clinical therapy. Several practical challenges, including sample preparation, ultrasound 
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exposure duration and intensity, temperature measurement, and lesion registration were overcome that 

were not present in the saline bath experiment. In contrast to the decreasing ESD estimated in the saline 

bath experiment with heat, an increase in ESD was estimated in the HIFU heating experiment. Also, the 

ESD changes did not correlate with histological findings, where the average estimated cell size changed 

by less than 1%, and estimates of the size of the nuclei decreased by 9%. While the presence of 

mechanical sources of damage such as cavitation cannot be excluded as a possible explanation, the 

discrepancy in the results between the HIFU and saline bath experiments appears consistent with 

undercompensated attenuation in the heated HIFU samples. The EAC in particular was consistently lower 

in ROIs directly beneath the lesion as determined by photograph evidence, suggesting that a significant 

uncompensated attenuation in the path to that area may be present.  

Uncompensated attenuation changes explain the discrepancy between the ESD estimates in the 

HIFU and saline bath experiments, as undercompensated ROIs will lead to larger ESD estimates. 

Furthermore, lesions formed by HIFU are not uniform in their effect, unlike in the saline bath 

experiments, and scatterer property estimates from ROIs correlated spatially with the HIFU lesions may 

consist of scatterers with a variety of properties. Aside from reducing the contrast between affected and 

unaffected regions, the ability to observe statistically significant differences would also be lessened. 

Although scatter plots indicated that changes in ESD and EAC with HIFU heating were small compared 

to sample variation, several sample/model pairs had statistically significant differences between before 

and after estimates. Envelope statistics parameters were insensitive to changes with HIFU heating, as only 

one sample was observed to have a statistically significant difference in either parameter. 

     Of the three models (spherical Gaussian, fluid-filled sphere, linear) and five QUS parameters 

(ESD, EAC, attenuation, µ, k), attenuation and ESD appeared to be the most reliable indicators of thermal 

damage. The spherical Gaussian and fluid-filled sphere models produced very similar estimates in the 

saline bath experiment, resulting in a clear separation between heated and unheated regions, while the 

linear model had the lowest MSE between measured and theoretical BSC curves. Changes in estimated 

attenuation coefficient with heating in saline were substantial. ESD had lower variance in general than 

EAC, which had large variance for the heated samples. Also, ESD and EAC appeared to be somewhat 

correlated, suggesting the ESD alone may be a useful indicator of heating. Envelope statistics parameters 

were not as sensitive to tissue damage from heating as ESD and EAC in either the saline bath or HIFU 

experiment. 

The effects on the estimated power spectrum due to changes in scattering and attenuation 

appeared to be opposite in the HIFU experiment, resulting in measurable changes in ESD and EAC only 
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at locations in depth where attenuation changes dominated. The estimates in these areas did not agree 

with the saline bath experiments or with histological findings. For this reason, a robust and reliable way to 

estimate attenuation changes in tissue independently of ESD and EAC would provide an important 

complement to existing QUS methods. 

 The findings of this work reflected positively on the potential of QUS for assessment of HIFU 

and thermal therapy. Changes in attenuation coefficient, BSC, and related QUS parameters have 

demonstrated the sensitivity of QUS to changes in liver tissue as the result of heating. An important 

experimental challenge highlighted by this work was to generate damage in liver ultrasonically that could 

be considered purely thermal in nature, thereby making a comparison of the saline bath heating and HIFU 

experimental results more meaningful. Two additional challenges were to measure changes in attenuation 

with HIFU exposure, which could be quite large and have a significant impact on QUS estimates, and to 

explain the apparent discrepancy between measured and modeled BSC for liver. Continuing work in QUS 

for HIFU assessment will focus on these challenges, along with developing a more systematic way to 

define and measure the exposure dose for HIFU and thermal therapy in tissues. 
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