Articulatory Speech Synthesis and Speech Production
Modeling

Jun Huang

Thesis Proposal
Ph.D. Preliminary Examination
Department of Electrical and Computer Engineering
University of Illinois at Urbana-Champaign

February 9 2001
3269 Beckman Institute

Committee:

Prof. Stephen E. Levinson (Chairperson)
Prof. Mark A. Hasegawa-Johnson
Prof. Thomas S. Huang
Prof. William D. O’Brien
Dr. Don W. Davis






TABLE OF CONTENTS

CHAPTER PAGE

1 INTRODUCTION . . . . . . e e e e e 1
1.1 History of Speech Synthesis . . . . .. ... ... ... . ... ..... 1
1.2 Speech Production . . . ... ... ... .. ... ... e 3
1.3 Contributions . . . . . . . . .. 6
1.4 Organization of the Proposal . . . . . . . .. ... ... .. ... .... 7

2 LITERATURE REVIEW . ... .. ... .. .. . ... ... ..., 8
2.1 Overview of Speech Synthesis Techniques . . . . . . .. ... . ... ... 8
2.1.1 Concatenative Synthesis . . . .. .. ... ... ... ... .. .. 10
2.1.2 Formant Synthesis . . .. ... ... .. ... ... ... ..., 14
2.1.3 Articulatory Synthesis . . . ... ... ... ... ... 17

2.2 Overview of Speech Production Model . . . ... ... ... ... ... 20
2.2.1 Source-filter Speech Production Model . . . ... ... ...... 20
2.2.2 Fricative Model . . . . . .. .. .. ... o 22
2.2.2.1 Acoustic Model for Unsteady Potential Flow . . . . . . . 23

2.2.2.2 Mean Flow Model for Steady Potential Flow . . . . . . . 25

2.2.2.3 Jet Model for Rotational Flow . . ... ... .. .. .. 27

2.2.3 Unvoiced Speech Sound Production Model . . . . . .. ... ... 29

2.3 Overview of Articulatory Speech Model . . . . . . . . ... .. ... ... 31
2.3.1 Coker’sModel . . . . . ... ... . .. ... 31
2.3.2 Mermelstein’s Model . . . . .. ... ... ... L. 31
2.3.3 Haskins Lab’s Model . . . . . .. ... ... 0. 34

2.4 Overview of the Motor Control of the Articulator . . . . . ... ... .. 35
2.4.1 A Dynamical Model of Articulation . . . .. ... ... ... ... 36
2.4.2 Motor Control Based on Minimum Cost Principles ... ... .. 39

3 ESTIMATION OF DYNAMIC ARTICULATORY PARAMETERS . 42
3.1 Cubic Spline Method . . . . . . . . . . . . . ... .. 42
3.2 Signal Approximation Method . . . . . . .. . ... ... L. 45
3.3 Review of the Signal Representation Techniques . . . .. ... ... ... 45
3.4 Notations . . . . . . . . . e 48

iv






341 LoSpace . . . . o o i e e e 48

3.4.2 Convolution-based Signal Representations . . ... ... ... .. 48
3.4.3 Interpolation and Quasi-Interpolation . . . . . . .. ... .. ... 49
3.4.4 Convolution-Based Least Squares . . . . . ... ... ... .... 50
3.4.5 Strang-Fix Conditions . . . ... .. ... .. .. .. ....... 51
3.5 Pointwise Error Analysis . . . . . . ... ... .. ... 52
3.5.1 Imterpolation Error . . . .. ... .. ... .. .. .. .. .. ... 52
3.5.2 Least Squares Error. . . . .. .. .. ... .. .. ... . ... . 54
3.6 Lo Error Amalysis . . . . . . . . . . . .. . . 55
3.6.1 Lg Error of Quasi-Interpolation . . . .. ... ... ... ..... 56
3.6.2 Ly Error of the LS Approximation . . . . . . ... .. .. ..... 57
3.6.3 CompariSon . . . . . .« .. e e e e e e e e 57
3.7 Experimental Results . . . . . . .. ... . ... .. ... .. ... ... 58
3.8 Discussion . . . . . . .. e e 62

CONSTRUCTION OF ARTICULATORY MODEL BASED ON MRI

DATA . . e 65
4.1 Problem Formulation . . . . . . .. ... .. ... .. ... ... ..., 65
4.2 Review of dimensionality reduction methods . . . . . . .. ... .. ... 66
4.3 Latent Variable Models . . . . . . . ... ... ... . . 67
4.3.1 Definition of general latent variable model . . . ... ... .. .. 67
4.3.2 Factor Analysis . . . . . . . . 70
VOCAL FOLD EXCITATION MODELS ... ... ........... 72
5.1 Parametric Models . . . . . . . . . . . ... e 72
5.1.1 Rosenberg’s Model . . ... ... ... ... ... ... ... ... 73
5.1.2 Titze’'sModel . . . . . . .. .. . e 74
5.2 Mechanical Model . . . . . . . . ... 75
521 Two-MassModel . .. . .. ... .. ... ... ... ... ... . 76
522 M-MassModel . ... ... ... . . ... ... 79
5.3 Experimental Results . . . . . .. ... ... ... ... .. ... ... 81
5.4 DISCUSSION . . . v . v i e e e e e e e 82

ANALYSIS OF THE VELOCITY AND VORTICITY FIELDS. . .. &9

6.1 Simulation Results . . . . .. ... . ... ... .. .. . 89
6.2 Analysis . . . . .. e 89
6.3 Relation to Speech Production Model . . . . . . ... ... ... ..... 89
SPEECH SYNTHESIS AND ANALYSIS RESULTS ... .. ... .. 90
7.1 Brief Overview of Fluid Dynamics . . . . . . ... ... ... ... .... 90
7.2 Governing Equations . . . . . . . . ... ... 93
7.3 Synthesized waveform . . . . . . . . .. ... ... ... 95
7.4 Speech Analysis Results . . . . . . ... . ... . ... ... ....... 97

7.4.1 LPC Spectrum and the Short-Time Power Spectrum . . . .. .. 97

v






7.4.2 Spectrogram . . . . . . v v v i e e e e e e e e e e e
7.5 Discussion . . . . . .. . e e e e e

8 CONCLUSION AND FUTURE WORK .. ... ... ..........

REFERENCES . . . . . . .. e

vi






LIST OF TABLES

Table Page
2.1 Identification of parameters and imposed limits for Mermelstein’s articu-

latory model [71]. . . . . . . . 33

2.2 Relationship between tract-variables and model articulators. . . . . . .. 35

5.1 Different experimental conditions for the simulation of glottal excitation. 81

2

vii






Figure
1.1

2.1
2.2

2.3

2.4
2.5
2.6
2.7
2.8
2.9
2.10
2.11

2.12

3.1
3.2
3.3
3.4
3.5
3.6

3.7

LIST OF FIGURES

Page
A simplified diagram of the human vocal system. . . .. ... ... ... 5
System architecture of the AT&T Next-Gen TTS. . . . . . ... ... .. 11
Viterbi search based on an inventory of multiple instances of each half-tone
needed for synthesizing silence-/t/-/uw/-silence (the word “two”) . ... 12
Block diagrams illustrating different structures of formant synthesizers (a)
cascade; (b) parallel. . . . .. .. .. L oo 15
Block diagram of the Klattalk formant synthesizer. . . . ... ... ... 16
Diagram of the Source-filter speech production model . . . . . . ... .. 21
System diagram of Howe’s aerodynamic sound generation model. . . . . . 23
Hlustration of flow direction computation for flow from left to right. . . . 26
Illustration of streamline computation for flow from left to right. . . . . . 27
Coker’s articulatory model. . . . . . . . . .. .. oo oL 32
Mermelstein’s articulatory model. . . . . . . . . ... oL 32
The task dynamic articulatory model, with tract variable degrees of free-
dom indicated by arrows. . . . . . . . ..o 34
Schematic illustration of the two-level dynamical model for speech pro-
duction. . . . . .. e e e e e e 36
Block diagram of the convolutional-based interpolator . . . . . .. .. .. 46

Block diagram of the convolutional-based least squares signal approximation. 47
Estimated first articulatory parameter using cubic spline interpolation and

LS approximation . . . . . . . . ... ..o 59
Estimated second articulatory parameter using cubic spline interpolation
and LS approximation . .. ... ... ... .. o o, 60
Estimated third articulatory parameter using cubic spline interpolation
and LS approximation ... ... .. ... ... e e e e 60
Estimated fourth articulatory parameter using cubic spline interpolation
and LS approximation . . . ... .. .. ... .. o 61
Snapshots of the vocal tract movements of phoneme /EH/ in /W/-/EH/-
SR/ 63

viii






4.1

5.1
5.2
5.3
5.4
5.9
5.6
5.7
5.8
5.9
5.10
5.11
5.12
5.13
5.14
5.15
5.16

7.1
7.2

7.3

7.4

7.5

7.6

7.7

7.8

7.9

7.10

7.11

Schematic illustration of a latent variable model with a three-dimensional

data space and a two-dimensional latent space. . . . . . .. ... ... .. 69
General waveform of the glottal area during excitation. . . . . . . .. .. 73
Glottal waveform computed from Rosenberg’s model . . . . . . . . .. .. 74
Glottal waveform computed from Titze’s model. . . . . . . ... ... .. 75
Two-mass model of the vocal fold. . . . . . .. .. ... ... ... .... 77
Simulated glottal area under the experimental condition runjj. . . . . .. 82
Simulated glottal area under the experimental condition runkk. . . . .. 83
Simulated glottal area under the experimental condition runll. . . . . . . 83
Simulated glottal area under the experimental condition runmm. . . . . . 84

Simulated glottal particle velocity under the experimental condition runjj. 84
Simulated glottal particle velocity under the experimental condition runjkk. 85
Simulated glottal particle velocity under the experimental condition runll. 85
Simulated glottal particle velocity under the experimental condition runjmm. 86
Simulated glottal volume velocity under the experimental condition runjj. 86
Simulated glottal volume velocity under the experimental condition runkk. 87
Simulated glottal volume velocity under the experimental condition runll. 87
Simulated glottal volume velocity under the experimental condition runmm. 88

Waveform of the synthesized dipthong /AY/ (“uy” inbuy). . ... ... 96
Waveform of the synthesized sentence “Where were you while you were
away” under the experimental condition of runjj. . ... ... .. .. .. 97
Waveform of the synthesized sentence “Where were you while you were
away” under the experimental condition of runkk. . . . . .. .. ... .. 98
Waveform of the synthesized sentence “Where were you while you were
away” under the experimental condition of runll. . . . . . .. .. .. .. 98
Waveform of the synthesized sentence “Where were you while you were
away” under the experimental condition of runmm. . . .. ... ... .. 99
LPC spectrum and short-time power spectrum of the synthesized dipthong
JAY/ (“ay” inbuy). . .. ... 100
Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runjj. . . .. ... ... ... 101
Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runkk. . . . . . .. . ... .. 101
Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runll. . . . .. ... ... .. 102
Spectrogram of the synthesized sentence “Where were you while you were
eway” under the experimental condition of runmm. . . . ... ... ... 102
Spectrogram of the recorded sentence “Where were you while you were
AWAY”. o e e e e e e e e e e e e e e e e e e e 103






CHAPTER 1

INTRODUCTION

1.1 History of Speech Synthesis

Speech is the most important form of human communication. It consists of a se-
quence of sounds which are generated by the vocal apparatus and used as a vital tool for
interaction among human beings. People have long been fascinated by the possibility of
enabling inanimate machines with the power of speech, or at least something resembling
it.

Early attempts to construct talking machines can be traced back to the eighteenth
century. Interest in speech synthesis began during the Greek and Roman civilizations
when clever deception gave voice to inanimate statues and gods. In 1779, Kratzenstein
constructed é set of acoustic resonators which, when activated by a vibrating reed, pro-
duced a reasonable imitation of the steady-state vowels [79]. Twelve years later, Von
Kempelen built a more elaborate machine that could generate connected utterances of
speech. The Von Kempelen speaking machine used a bellows to supply air through a
reed acting as the vocal cords. Voiced sounds, consonants and nasals could be generated

by exciting a resonator whose shape was determined by the operator’s one hand and



controlled by the fingers of the other hand. An elaborate version of this machine was
later built and demonstrated by Sir Charles Wheatstone in 1879. The influence of tVon
Kempelen'’s machine also motivated Alexander Graham Bell in the late eighteenth cen-
tury to model many of the articulators using a cast from human skull and modeling the
interior parts of the vocal tract in guttapercha. Interesting enough, Bell and his brother
were able to imitate many of the vowels and nasals, and their creative work was later
acknowledged as a U.S. patent, dated 1876. The construction of mechanical machines
to simulate voice sounds was not an easy task due to the numerous variations in pitch,
intonation, etc., and the complex movements of the vocal apparatus. As an article in
Scientific American published in 1871 [33] puts it, “Machines which, with more or less
éuccess, imitate human speech, are the most difficult, to construct, so many are the agen-
cies engaged in uttering even a single word - lungs, larynx, tongue, palate, teeth, lips -
so many are the inflections and variations of tone and articulation, that the mechanician
finds his ingenuity taxed to the uttermost to imitate them.”

The first electrical synthesizer which attempted to generate connected utterances was
the Voder [20] developed by Dudley et al. in 1939. The device was driven manually and
consisted of ten parallel bandpass filters that span the entire frequency range of speech
and a set of resonances and anti-resonances were applied to the excitation source. The
resonance control box was excited by either a noise source or a buzz oscillator. The Voder
achieved enormous success in producing reasonably intelligible speech quality and was
later demonstrated at the world’s fairs of 1939 in New York and 1940 in San Francisco.
The evolution of electronic technology and the greater interest in human-machine com-
munications sprang new and exciting dimensions in speech synthesis. The first was the
development of the Vocoder machine by Dudley [21] based on the principles of speech
analysis and synthesis. With the recent growth in high speed digital computers and the

progress encountered in the development of integrated circuitry, analysis-synthesis tech-



niques began to play an important role in speech communication to reduce the transmis-
sion bandwidth used for speech signals. The application of analysis-synthesis techniques
extends to many areas where memory storage is limited. Synthetic speech in devices
for human-machine communication has proved successful in producing resonable human
utterances and reducing message storage space significantly.

As an alternative to analysis-synthesis methods, speech can be synthesized accord-
ing to certain linguistic and acoustic rules which convert a string of discrete symbols
into speech. This is known as Text-To-Speech (TTS), or synthesis by rule. Prosodical
information such as duration, pitch and stress is necessary to describe the manner and
strategy by which the utterance is to be spoken. The history of speech synthesis by
rule extends back to the late 1950s when acoustic signals started to be recognized as
individual speech sounds [65]. However, the first automatic TTS system was generated
in 1961 by Kelley and Gerstman [56] which enabled direct transformation of linguistic
units, supplemented with pitch and timing information, into segments of speech. Their
rules for formant synthesis were later elaborated for British English by Holmes et al. in

1964 [43].

1.2 Speech Production

In the previous section, a brief history of speech synthesis was outlined. Any kind of
speech synthesis method is based on a certain type of speech production model. They
differ in their complexity and in the methods employed for achieving natural quality
synthetic speech. Speech can be described as a sequence of sounds which are generated
when a flow of air is disrupted or perturbed by the vocal apparatus, namely, lips, jaw,
tongue, velum and larynx. These are also known as the vocal articulators. A simplified

diagram of the human vocal system for speech production is shown in Fig. 1.1. The vocal



tract is considered as a non-uniform acoustic tube which extends from the vocal cords
to the lips. The vocal cords are essentially shelflike ligament-covered muscles embedded
in the edges of the larynx. The region between the larynx and the velum is referred
to as the pharyngeal tract and that between the velum and the lips as the oral tract.
The cross-sectional area of the vocal tract varies from 0 to 20 em? depending on the
position of the articulators, which also determine the overall length of the vocal tract.
The vocal tract length varies between 15 cm and 20 cm for different speakers and may
change according to the sound produced. For an average adult male, the vocal tract
is considered to be about 17 cm long in its rest position. For the production of nasal
sounds, the nasal tract is acoustically coupled to the vocal tract by lowering the velum
and forming a constriction at some point along the oral cavity. Under these conditions,
the air flows through thebpharynx into the nasal cavity and sound is radiated at the
nostrils. For an average adult male, the overall length of the nasal tract is about 12 cm
long and its cross-sectional area changes mainly in the region close to the velum.
Speech sounds can be roughly classified into three categories, namely voiced, fricatives
and plosives depending on their methods of excitation. Voiced sounds are produced if
the air passing through the larynx causes vibration of the vocal folds. Consequently,
quasi-periodic pulses of air are produced whose period is determined by the mass and
tension of the cords, as well as the subglottal pressure. Examples of voiced sounds are
/i/ (as in beet) , /u/ (as in boot) and /a/ (as in hot). Fricative sounds are generated
by forcing air through a constriction formed at some point in the vocal tract which
results in a turbulent flow of air in that region. Constrictions can be labio-dental, dental,
alveolar, palatal or glottal. For example, the sound /8/ ( as in thick) is produced by a
constriction in the dental region. The third class of sounds is referred to as plosive. These
are produced when a build-up of pressure behind a complete closure in the vocal tract is

suddenly released by the articulators. Closures can be labial, alveolar, palatal or velar.
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Figure 1.1 A simplified diagram of the human vocal system.

A typical example is the sound /p/ (as in pick), produced when a closure in the labial
region is formed. All the above speech sounds are considered as basic linguistic units and
are often referred to as phonemes. Details of the physiology of speech production and a
phonetic study of English sounds are described in great detail by Fant [27].

Currently, the most widely used speech production model assumes that the excitation
source (vocal cords) and the “filter” (vocal tract) are separable; the vocal tract can be
approximated as a series of abutting lossless acoustic tubes and the sound propagation
inside the vocal tract can be modeled as a one-dimensional plane wave. These assump-
tions lead to the source-filter speech production which can be formulated mathematically
as the linear prediction coding (LPC) model. Despite of its simplification of the compli-
cated speech production mechanism, the LPC model has resulted in tremendous success

in a wide range of speech processing scenarios, such as feature extraction in speech recog-



nition, speech production modeling in speech synthesis and in speech coding. The details

of the source-filter model and LP analysis will be presented in the next chapter.

1.3 Contributions

During the last decades, progress in computational power, pattern recognition, signal
processing, statistical modeling et al. have opened a new phase in the area of speech signal
processing. For example, the concatenative speech synthesis technique can synthesize
highly intelligible speech sounds. For some specific domain applications, it can synthesize
almost natural sounding speech by carefully concatenation of word strings in a large
database. However, there still remain specific setbacks that prevent current systems
from achieving the goal of completely human-sounding speech. Furthermore, even if the
current systems might have a lot of commercial success, they can’t help us understand
the basics and some unsolved, yet important problems in human speech and language.

This dissertation addresses the problem of articulatory speech synthesis based on fluid
dynamic principles. The overall strategy of our investigation is to devise a refined speech
production model based on the most fundamental physics of the human vocal appara-
tus. Unlike the conventional “source-filter” model which assumes the independence of
the excitation and the acoustic filter, we treat the entire vocal apparatus as one system
consisting of a fluid dynamic aspect and a mechanical part. We model the vocal tract by
a three-dimensional moving geometry. We also model the sound propagation inside the
vocal apparatus as a three-dimensional non-plane wave propagation inside a viscous fluid
described by Navier-Stokes equation. The primary contribution of this thesis can be sum-
marized as follows. First, we integrated the whole articulatory speech system including
vocal cord modeling, vocal tract geometry estimation and Navier-Stokes equation solving

to synthesize both speech phonemes and continuous speech sentences, which we believe



has never been done before. Second, we proposed a signal approximation technique in
the Hilbert space framework and applied it to the estimation of dynamic articulatory
movement. Third, we will simulate and analyze the velocity and vorticity fields in the
speech production and investigate the interaction between the sound mode and the flow
mode and their influences in speech production. If time permits, we will also construct a
physical articulatory speech production model based on the magnetic resonance imaging

(MRI) data of the human vocal apparatus.

1.4 Organization of the Proposal

This proposal is organized as follows. In Chapter 2, we review the relevant literature
on speech synthesis and speech production modeling. The algorithms of estimation of
dynamic articulatory parameters and the error analysis are developed in Chapter 3. In
Chapter 4, we present different kinds of vocal cord excitation models. The theoretical
deifelopment of the articulatory model construction based on MRI data is introduced in
Chapter 5. In Chapter 6, the velocity and vorticity fields in speech sound production are
analyzed and their relation to a refined speech production model is stated. We present
the evaluation results on speech synthesis and analysis in Chapter 7. Finally, the results

of this thesis work and the topics for future research are discussed in Chapter 8.



CHAPTER 2

LITERATURE REVIEW

2.1 Overview of Speech Synthesis Techniques

Speech synthesis technology can been classified into three broad categories: concate-
native synthesis, formant synthesis and articulatory synthesis.

Concatenative synthesis is currently the most pbpular technique in commercial and
research text-to-speech (TTS) systems. This method relies on extracting model param-
eters from speech data (or often just storing raw Waveforms) and concatenating these to
create new utterances. There are several classes of speech models that allow varying de-
gree of control over the different characteristics of the voice quality: the linear predictive
coding (LPC), based on a source-filter model using a synthetic source; pitch-synchronous
time-domain models; and sinusoidal models that represent the speech waveform as a
sum of time-varying sinusoidal waves. The concatenative synthesis holds the promise of
representing ill-understood fine details in the voice and replacing hand-optimization of
rules with a data-driven approach to waveform generation. The intelligibility of the con-

catenative speech synthesis systems is good. However, they are not flexible in producing



characterized sounds of different speakers and the naturalness of the synthesized speech
is not satisfactory.

Formant synthesis is a parametric approach which applies a set of rules for controlling
the frequencies and amplitudes of the formants and the characteristics of the excitation
source. Although certain isolated phonetic units can be characterized almost solely by
their formant frequencies and motions, the formant locations in continuous natural speech
are heavily influenced by context. Because of this fact, the rules necessary to control a
formant synthesizer are rather complex. Another feature of parametric formant synthesis
is that the input parameter list can grow to be fairly large. A Klatt synthesizer can have
over fourty input parameters that need to be tracked over time. The shortcomings of
formant speech model are the fundamental limit to the naturalness of speech produced
by rule, and the large number of parameters that need to be tracked.

Articulatory synthesis attempts to produce speech by first understanding how the
vocal apparatus changes shape during speech production, then understanding the acous-
tic problem of how those movements translate into sounds. The input parameters to an
articulatory synthesizer used to create speech include the positions of the model articu-
lators, such as the tongue body height, and these parameters are specified as trajectories
through time. Physical models of aerodynamic processes and of wave propagation inside a
tube are used to convert the input parameters of the synthesizer into sound. Articulatory
synthesis is potentially the most efficient way to generate speech waveforms with natural
sounding, customized voices. However, many important problems need to be solve before
articulatory synthesizer can be used to produce better quality speech. One of the major
impediments to the use of articulatory synthesis in creating natural sounding speech has
been a lack of knowledge of the articulatory movement patterns. Second, a good vocal
fold model need to be coupled with the fluid model inside vocal apparatus to generate

the excitation signals for high quality speech synthesis. Third, there is a problem in



identifying the articulatory degrees of freedom which are most salient to the production
and propagation of sound. It is necessary to know the salient components of articulation
because there are simply too many degrees of freedom to hope to make a practical ar-
ticulatory synthesizer without such knowledge. Fourth, It is well-known that the sound
propagation inside the vocal tract is a three-dimensional non-plane wave propagation
inside a viscous fluid described by the governing Navier-Stokes equation. How can we
investigate the energy exchange between the convective and propagative components of
the fluid Alow and the effect of nonlinear fluid flow on the speech production? Finally,
although articulatory synthesis is efficient in terms of number of controlled parameters,
the computational cost is very high. A new computational model which can capture the
nonlinear effects in speech production with resonable computational complexity is very

important for the practical usage of articulatory synthesis.

2.1.1 Concatenative Synthesis

A widely used method for converting a string of phonemes into an acoustic signal is
the concatenation of segments (such as diphones) of naturally spoken utterances. In con-
catenative synthesis, segments of speech are excised from spoken utterances and are con-
nected to form the desired speech signal. Currently, concatenative synthesis is the most
comercially successful technique for speech generation. In December 2000, SpeechWorks
announced “Speechify 1.0, a product of the strategic partnership between SpeechWorks
and AT&T, is the first to capitalize on 30 years of AT&T Labs research developing
human sounding, synthesized speech with sophisticated language analysis capability.”
“With Speechifyl.0, weather updates, traffic reports, search engine results, email, stock
quotes and a wide range of other kinds of dynamic information from databases or web-

sites can be accessed in real-time and easily understood by callers. The Speechify engine
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retrieves information from a database, synthesizes the text and outputs it in audio format
over any phone.”

There are two main problems in concatenative synthesis: wunit selection and speech
model. Unit selection involves defining the inventory of units as well as selecting the
appropriate unit for a given phonetic (and prosodic) context. Speech models in speech
synthesis include linear predictive coding (LPC), pitch-synchronous time-domain models
such as pitch-period-sized waveform samples (PSOLA), and sinusoidal models that rep-
resent the speech waveform as a sum of time-varying sine Waveé. Although each of these
models has its own merit, none have yet proven to satisfy all the desired properties of a

TTS waveform model.

Text . Text Linguistic - Prosody
Normalization Analysis Generation
Unit -~ Synthesis L
Selection Back-End
Speech

Figure 2.1 System architecture of the AT&T Next-Gen TTS.

In this section, we will discuss the AT&T NextGen speech synthesis system, which
is a typical example of the state-of-art contatenative synthesis system. Fig. 2.1 shows
the system diagram of AT&T Next-Gen TTS system. The text normalization, linguis-
tic processing such as syntactic analysis, word pronunciation, prosodic prediction and
prosody generation (translation between a symbolic representation to numerical values
of fundamental frequency Fy, duration and amplitude) is done by a Flextalk object that
borrows heavily from AT&T Bell labs’ previous TTS system [8]. In the following, we will

discuss in certain detail about the unit selection and synthesis back-end of the AT&T

NextGen TTS system.
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Diphone systhesis has been popular for a number of years, due to the high intelligibil-
ity that such system provide. They have the ability to preserve some of the coarticulation
effects that are present at phoneme boundaries. However, such systems are handicapped '
by having a large number of distance units (in the range of 1000 - 3000 diphones, depend-
ing on language and phone-set chosen), for which it is not easy to create sufficiently large
database that capture all relevant coarticulation effects. Statistics become even worse if
we demand that all relevant prosodic variations are covered.

The online unit selection of AT&T’s NextGen T'TS was adopted from ATR’s CHATR
system. In CHATR system, it requires a set of speech units that can be classified into a
small number of categories such that sufficient examples of each unit are available to make
statistical selection viable. Hence, the original CHATR system uses phonemes as units.
To avoid problems of concatenation at phoneme boundaries, a flexible join technique is
employed that allows moving unit boundaries. In order to arrive at a robust paradigm,
the AT&T’s NextGen T'TS has chosen to use half phones as the basic units of synthesis
in a way that allows synthesis from units ranging in size from diphones and phones to

whole words and even phrases.

Figure 2.2 Viterbi search based on an inventory of multiple instances of each half-tone
needed for synthesizing silence-/t/-/uw/-silence (the word “two”)

12
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Most of the concatenative TTS system use the statistical modeling technique from
speech recognition field to dynamically search for the sequence of synthesis units that
minimizes context mismatch and concatenation costs. In this way, units with size varying
from a fraction of a phone to many words can be used together in a dynamic way. Fig.
2.2 shows the viterbi search based on an inventory of multiple instances of each half-tone
needed for synthesizing silence-/t/-/uw/-silence (the word “two”). More details can be
found in [15].

In the context of speech synthesis based on concatenation of acoustic units, speech
signals may be encoded by speech models. These models are required to ensure that
the concatenation of selected acoustic units results in a smoothed transition from one
acoustic unit to the next. One option in AT&T’s NextGen TTS is the Harmonic plus
Noise model (HNM). HMM has the capability of effective waveform modifications such as
controls of prosody, emotional stress, et al. Combining HNM to efficiently represent and
modify speech signals with a unit selection algorithm may alleviate difficulty of prosodic
modification problem in conventional concatenative speech synthesis system.

In HNM, the speech spectrum is divided inté two bands: a low band, which is rep-
resented by harmonically related sinusoids Witi’l slowly time-varying amplitudes and fre-
quencies, and a high band that is instantiated by a time-varying auto-regressive (AR)
model that is excited by Gaussian noise. HNM analysis consists of three steps. First,
fundamental frequency (Fp) and maximum voiced frequency that determine the number
of harmonics used are set using a time-domain approach. Then, harmonic amplitudes
and phases are estimated by minimizing a weighted time-domain least squares criterion.
Finally, the AR filter for the high‘band is estimated by the autocorrelation approach.
the analysis windows are set at a pitch-synchronous rate during voiced portions of speech
and at a fixed rate during unvoiced portions. Note that the length of local pitch epochs

in HNM are estimated internally. Analysis windows are two pitch epochs long. For
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HNM synthesis, inter-unit phase nﬁsmatches are eliminated using the center-of-gravity
approach [117]. Prosody may be altered as desired. Around unit concatenation points,
the HNM parameters are smoothed in order to minimize residual discontinuities by em-
ploying a linear interpolation over a small number of frames. The actual synthesis is done
by following the overlap-and-add paradigm. For each frame, the noise part is high-pass
filtered according to the maximum voiced frequency found during analysis. Furthermore,
the noise part is modulated by a parametric triangular envelope synchronized in time

with the pitch period. Details of HNM and its application to concatinative synthesis can

be found in [118]

2.1.2 Formant Synthesis

The efficient representation of the speech signal in the spectral domain led to the
development of formant (or resonance) synthesizer. In formant synthesis, the acoustic
characteristics of the vocal tract are modeled directly in the frequency domain by a set
of resonators. It is based on the assumption of source-filter separation and attempts to
model the acoustics of the vocal tract using poles (formanfs). Formant synthesizer may
also introduce additional anti-resonances to accommodate zeros in the transfer function
for the production of nasal and unvoiced sounds. They are also suitable for including
effects of radiation at the lips and nostrils.

Formant synthesizers have essentially two implementation structures. The first struc-
ture is based on the orator verbis electric (OVE) synthesizer developed by Fant [26]. It
includes a set of resonators connected in cascade which models the vocal tract transfer
function in the frequency domain. A simplified structure of a cascaded formant synthe-
sizer is shown in Fig. 2.3 (a). Five resonators are selected to cover the rangeA up to

5 kHz and are adjusted by a set of control parameters representing formant frequencies
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Figure 2.3 Block diagrams illustrating different structures of formant synthesizers (a)
cascade; (b) parallel.

and bandwidths. The second structure of formant synthesizers is based on the notion
of Lawrence’s parametric artificial talking (PAT) device [63], [1]. The resonators which
simulate the vocal tract transfer function are connected in parallel as shown in Fig. 2.3
(b). This structure enables formant peaks to be adjusted individually for the production
of voiced and unvoiced sounds. A refined version of this model was reported by Holmes
[44] which incorporated four resonators to model the acoustics of the vocal tract and
an additional one to accommodate nasalization. This was later extended by the same
author to include four more filters to cover frequencies up to 8 kHz [46].

Comparison of the cascaded and parallel configurations is presented rigorously by
Holmes [45]. In theory, both structures should be able to produce similar vocal tract
transfer functions once the driving parameters are suitably adjusted. The main advan-
tage of cascaded formant synthesizers is their ability to produce natural-sounding vowels
without the need to control the relative amplitude of the individual formant resonators.

These synthesizers, however, cannot easily accommodate changes of vocal effort. Parallel
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formant synthesizers, on the other hand, are capable of compensating for spectral varia-
tions due to the excitation and can produces fricatives and plosives adequately by simple
control over the spectral levels in critical band regions above 3 kHz. To take advantage
of both structures, Klatt introduced a hybrid synthesizer (Klattalk) [59] which requires
39 control parameters and employs cascaded resonators for generating voiced sounds and
parallel resonators for producing fricatives. The block diagram of the Klattalk formant

synthesizer is shown in Fig. 2.4.

Voicing Source \
Vocal Tract

@——* Transfer Function
Radiation

/ (cascade resonators)
Effect

Speech
Vocal Tract /

Transfer Function
(parallel resonators)

Aspiration S
piration Source Synthesized

e

Frication Source

Figure 2.4 Block diagram of the Klattalk formant synthesizer.

Several models have been proposed for voiced excitation of formant synthesizers.
Holmes [44] examined variations of glottal waveforms for different speakers by inverse fil-
tering the speech signal. His finding showed that the low frequency harmonics of different
excitation waveforms are similar and, perceptually, only the fundamental frequency ,the
open quotient (ratio of pulse duration to pitch period) of the pulse shape and the speed
quotient (ratio of rising pulse duration to falling pulse duration) are important parame-
ters. He then recommended a glottal pulse produced by a spectral flattening procedure
from the speech signal of a specific speaker. Other more sophisticated models have been
reported by Fant et al. [29] and by Klatt [59]. For voiceless excitations, friction noise is

introduced at the selected frequencies [59]. The ability to control the acoustic properties
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of the vocal tract directly by formant synthesis is important for many psycho-acoustic

studies. Their application to formant vocoders and synthesis by rule has been successful.

2.1.3 Articulatory Synthesis

An alternative solution to generating synthetic speech is to model the physical hu-
man vocal apparatus. This is known as articulatory synthesis. Articulatory synthesis
essentially contains two parts: a vocal fold model which represents the excitation source
and a vocal tract model which describes the positions of the articulators such as tongue,
lips and jaw. It is expected that in articulatory synthesis high quality speech will be
generated if the positions of the vocal apparatus are defined explicitly and an excitation
source is provided which can interact appropriately with the acoustic input impedance
of the vocal tract, thus providing a more exact model of the speech production mech-
anism. Digital synthesizers that model the speech production mechanism directly have
been extensively studied in the past decades. They are essentially different in the method
employed for modeling the excitation source and the vocal tract. Flanagan et al. [35]
and Maeda [68] used a set of linear and non-linear differential equations to characterize
the wave propagation in the vocal system. Models which employ types of wave-digital
filters have been described by Kelly and Lochbaum [57], Liljencrants [66] and Meyer et al.
[72]. Sondhi and Schroeter developed a hybrid synthesizer that models the glottis in the
time domain and the vocal and nasal tracts in the frequency domain [110]. Levinson and
Schmidt proposed an unconstrained optimization technique to estimate the static artic-
ulatory parameters of English phonemes based on minimizing the difference between the
natural speech spectra and the model speech spectra computed from the lossy Webster

equation [64]. Hasegawa-Johnson has developed a low-complexity finite element model
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of the vocal folds, and a multi-speaker MRI database of three-dimensional vocal tract

shapes of vowels [39].

The advantages of articulatory synthesis are mainly the following.

1. Nonlinear interaction can be employed between the excitation source and
the acoustic input impedance of the vocal tract. Conventional speech
synthesizers based on linear prediction of the speech waveform assume
source-tract separability. This is unrealistic for the production of conso-
nants such as fricatives and plosives since the position and amplitude of
the excitation signals are governed by the shape of the vocal tract. In our
study, we even find out strong source-tract interaction in the production
of voiced sounds.

2. Since the control parameters of an articulatory speech synthesizer are ex-
pected to change very slowly in time to model the movements of the human
articulators, they form potential candidates for very low bit rate speech
coding applications. Interpolation of these parameters over several frames
of speech generates reasonable vocal tract shapes, whereas, interpolation
of LPC coefficients can give rise to unrealistic speech sounds.

3. For TTS applications, articulatory synthesis use rules which naturally
relate to articulator movements to deal with the problems of coarticulation
and unit concatenation, which are difficult problems in formant synthesis
and concatenative synthesis.

4. Theoretically speaking, articulatory synthesis has the potential of produc-
ing human-like speech sounds although the computational complexity of
constructing accurate mechanical vocal folds model and the human-like

vocal tract shape and the solution of highly-nonlinear differential equa-
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tions governing the sound propagation inside vocal apparatus is still too
high even for the currently available super-computers.

5. Articulatory synthesis offers a more direct and elegant way to synthesize
personalized speech sounds. For example, in order to synthesize the speech
sounds of different speakers such as a tall male, an average male and a
young boy or sounds under different stress conditions, conventional syn-
thesizers rely on some empirical rules and certain minimum error criterion
to find a set of sub-optimal parameters for the waveform modification for
a specific speaker. Since most of the parameters in conventional speech
synthesizer are not directly relate to the physical parameters involoved in
human speech production, the synthesized speech waveform is unsatisfac-
tory in many cases. In the case of articulatory synthesis, we can easily
change the value of several articulatory parameters such as vocal tract
length and expect to synthesize personalized speech sounds very close to

human sounds under different scenarios.

An articulatory synthesis system has been proposed by Rahim et al. [84], [85], [86],

[88] essentially based on artificial neural network (ANN). Our work differs from his work

in the following aspects.

1. In Rahim’s work, a multi-layer perceptron (MLP) neural network was ex-
tensively used to model the non-linear relationship between the acoustic
representation of speech signal and the vocal tract shapes. An acoustic-
to-articulatory codebook was generated by the training data to cover an
adequate span of the entire articulatory space of voiced and nasal sounds.
Then, a dynamic programming (DP) approach was used to select an “op-

timal” trajectory of vocal tract shapes from the codebook by minimizing
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a sum of acoustical and geometrical cost components over several frames
of speech. On the other hand, in our work, an advanced digital signal pro-
cessing (DSP) approach is used to estimate the trajectory of articulatory
parameters from the static articulatory parameters. Instead of generating
a very large codebook which trie to cover the whole range of articula-
tory space, our approach just needs the estimation of static articulatory
parameters. Then the trajectory of articulatory parameters is estimated
using advanced digital signal processing (DSP) technique. Finally, the
estimated dynamic articulatory parameters were mapped into the moving
vocal shapes.

2. Rahim’s articulatory synthesizer assumes one-dimensional plane-wave prop-
agation inside a lossy vocal tract. In our work, sound propagation inside
the vocal apparatus is considered to to be a non-plane wave propagation
inside a viscous fluid with the governing Navier-Stokes equations.

3. The glottal excitation in Rahim’s synthesizer was represented by a para-
metric model. In our work, the excitation signal is generated by a multi-
mass mechanical model of the vocal fold and a closer and more realistic

source-tract interaction is investigated in our approach.

2.2 Overview of Speech Production Model

2.2.1 Source-filter Speech Production Model

One of the most popular models in speech signal processing is source-filter speech
production model In this model, the source waveform is filtered by & time-varing linear

filter with its spectrum peaks corresponding to the vocal tract resonace. The source
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filter model is computationally fast and provides a vital tool for estimating basic speech
parameters such as pitch, formants and pseudo vocal tract areas. Fig. 2.5 shows the

system diagram of source-filter model [81].
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Figure 2.5 Diagram of the Source-filter speech production model

In signal processing scenario, the source-filter model can be described by linear pre-
diction (LP) analysis. The basic idea of LP analysis is to perform prediction of a speech
sample from knowledge of past samples. The prediction error is the difference between
the predicted sample and the actual one, and when minimized, leads to an optimized
set of predictor coefficients. In an LP vocoder, speech is classified as either voiced or
unvoiced. During voiced regions, the filter is excited by quasi-periodic pulses generated
at intervals of averaged pitch periods. While for voiceless sounds, the excitation signal is
provided by a white noise generator. The excitation is scaled by a gain factor G which is
determined by matching the energy of original and synthetic segments of speech [81]. A
complementary feature in LP analysis is that efficient and simple procedures are available
for estimating the AR coefficients a; and the gain factor G. There are two major im-
plementations of linear prediction: the auto-correlation method [70] and the covariance
method [2]. The difference of these two methods lies in their segmentation of the speech

signal.
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Linear prediction methods usually assume that the signal being processed is stationary
within the analysis interval. It is therefore necessary to perform linear prediction over a
segment of speech where the vocal tract movement is negligible. The quality of the output
speech varies according to the position and size of the analysis window as well as the order
of the predictive filter and the analysis method employed for estimating the prediction
coefficients. A study of the variation of the prediction error with the position of the
analysis window is discussed in [81]. There is usually a trade-off between the quality of
the synthesized speech and the update rate of the filter parameters. For example, during
regions of unvoiced speech, the filter parameters are changed at regular intervals (typically
10 ms). While for voiced segments, these parameters are updated at the beginning
of each pitch period (pitch-synchronous) or per fixed frame size (pitch-asynchronous).
Pitch-synchronous analysis has been found to be a more effective synthesis method, and

is commonly used for estimating pseudo vocal tract area functions.

2.2.2 Fricative Model

In his Ph.D. thesis [105], Sinder proposed a fricative model which combines an existing
model for acoustic propagation with a reduced model for the structure of turbulent jeté.
This model is based on physical principles from aeroacoustics and unsteady aerodynamics
and is specifically applicable to articulatory speech synthesis.

As described in Chapter 1, Fricatives are produced when air from the lungs is forced
through a tight constriction in the vocal tract forming a high speed jet. At the con-
striction exit, the jet becomes turbulent and generates flow induced noise which excites
resonances of the vocal tract. Sinder’s fricative model is based on Howe’s aeroacoustics

and aerodynamics theory of sound generation [49]. In this theory, the information re-
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quired to model the generation of aerodynamic sound and its propagation inside a vocal

tract can be parameterized by three component models as following.

1. Jet Model: A description of the formation and convection of vorticity,
including vortex strengths, speeds and trajectories.

2. Mean Potential Flow Model: A model for the direction of the irrotational
mean flow.

3. Acoustic Propagation Model: A model which solves for acoustic wave

propagation in the duct given a description of acoustic source present.

Geometry/Boundary
Conditions

Acoustic Model
Acoustic Output

Source Computation

L d N~
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Figure 2.6 System diagram of Howe’s aerodynamic sound generation model.

Fig. 2.6 illustrates the components for computing aerodynamic sound generation
using Howe’s source term. In the following sections, we will briefly discuss the core

components of Sinder’s fricative model based on aeroacoustics and aerodynamics [105].

2.2.2.1 Acoustic Model for Unsteady Potential Flow

The acoustic model computes the small perturbations of velocity and pressure as-

sociated with acoustic resonance of the vocal tract. The conventional transmission line
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analogy is used to model plane wave propagation in the vocal tract. The transmission
line T-networks include resistors representing wviscous loss, inductors representing fluid
inertia, and capacitors representing fluid compliance. A series pressure source is included
in each T-network to allow the introduction of source pressure computed either from
Howe’s source term or a random process generator. In series, a supplemental resistance
is also included to incorporate losses due to flow separation where a jet is formed. Such
losses will be discussed later. Omitted are additional impedance to account for heat
conduction through the wall and wall vibration. These elements generally result in slight
increases in formant bandwidths, especially at low frequencies due to the wall vibration.
Contributions to the acoustic field outside the mouth due to sound radiation through the
vocal tract wall are neglected. Also, a nasal tract branch is not included since the nasal
tract is not involved in fricative production. The transmission line equations are solved
in the time domain in a fashion similar to the approach described in [54].

The inlet boundary condition specifies a volume source at the inlet. In speech pro-
duction, lungs serve as a reservoir of air which is supplied to the vocal tract by increasing
subglottal pressure. This mass source can be modulated by the valving action of the
vocal folds during phonation. In the case of voiced fricatives, the inlet mass supply acts
as a monopole acoustic source which excites the vocal tract. For unvoiced fricatives, a
steady flow of air is supplied from the lung and the vocal tract is acoustically excited by a
downstream acoustic source which can be modeled by a dipole acoustic source. Two inlet
boundary conditions are used in Sinder’s model. The first one supplies a steady volume
source at a constant duct area by fixing the volume velocity there. This inlet condition
is used for fixed vocal tract shapes when simulating sustained, unvoiced fricatives. The
second inlet condition, which models the monopole source due to phonation, is Ishizaka
and Flanagan’s two-mass vocal fold model [54]. The two-mass model provides broad

band excitation of the vocal tract when simulating voiced speech. When the glottis rest
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area is set sufficiently wide open, the folds stop vibrating and a steady volume velocity
is supplied to the vocal tract. Thus, this model is used to simulate fricatives in a vowel
context.

The outlet boundary conditions is applied by terminating the transmission line with
a radiation impedance which approximates the radiation characteristics of a piston in
an infinite plane baffle [33]. Specifically, a parallel combination of a resistance R,,; and

inductance Ly is used in the following expressions.

128pc

Rout = oA (2.1)
810 Aout
Lou = —— .
¢ 37rAO’LLt ™ (2 2)

where Ay is the area of the outlet opening.

2.2.2.2 Mean Flow Model for Steady Potential Flow

The potential flow is that portion of the flow which is irrotational. In Howe’s source
term, the relative directions of vortex trajectories and potential flow are critical. Thus,
the magnitude of the mean flow alone is not sufficient. Its direction as it flows around
obstacles is a key component, which is why the mean flow model discussed below is
important. For speech synthesis, a solution for arbitrary geometries is desirable, as is a
solution which is computationally reduced. Therefore, rather than numerically solve a set
of partial differential equations for potential flow in a fine spatial grid, a simplified model
was developed. This simplified mean flow model has two major components, namely
approximation of the flow direction and the computation of streamlines.

The directional information is computed by assuming that the flow uniformly expands
and contracts through changes in the cross-sectional area of the vocal tract. Consider a

short length of the tract as shown in Fig. 2.7 [105] with endpoints z,, and z,.;, radii
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Figure 2.7 Illustration of flow direction computation for flow from left to right.

7y, and Tn.1, and flow from left to right. The flow direction at an arbitrary point P at

(zp,7p) within the small section is determined to be the same as the vector from the

focus point z to point P. Specifically, angle 6, between the flow direction and the axis
! p

of symmetry is given by:

= tan~}(—2 .
Op = tan (:cp-—xf> (2.3)

Zz f= Ty — T,

In fluid mechanics, lines which are everywhere tangential to the velocity vector are
called streamlines [17]. The approximate streamlines can be computed by assuming
that all streamlines have the same focus point within the section. Note that the dis-

tance between streamlines can be interpreted in terms of flow velocities. That is, denser

streamlines indicate higher particle velocities. -
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2.2.2.3 Jet Model for Rotational Flow

Fluid flow can be decomposed into irrotational and rotational components. We will
briefly describe Sinder’s model for the rotational component, its structure and evolution
in this section. Note that this model is a highly reduced description which still remains

faithful to the physical principles important for noise generation.

| fully developed ——
region

J mixing region

Figure 2.8 Ilustration of streamline computation for flow from left to right.

At a sudden expansion in a duct, high speed flow can separate from the relatively
stagnant fluid on the downstream side of the expansion wall, resulting in a turbulent jet.
Vorticity, initially present in the wall boundary layer at the jet exit, causes the jet to mix
with the surrounding fluid reservior through the action of viscous and turbulent diffusion.
At first, this mixing occurs along the boundary of the jet in a shear layer which grows
approximately linearly with distance from jet formation. In an axisymmetric jet, the
shear layer is annular in shape. Eventually, the shear layer merges with itself, closing the
annulus. At this point, the potential core of the jet ends, and the jet is fully developed.
Fig. 2.8 illustrates this structure [105].

The shear layer is dominated by the largest vortices (also called coherent structure)
which control the mixing rate and are nearly as wide as the shear layer itself. These large

eddies shed from a location near the jet exit at nearly regular intervals forming an array
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of vortex rings which convect downstream. This arrangement is referred to as a vortex
street. The jet model is based on the structure described above, with particular focus on
large eddy structures of the vortex street concept which play an important role in sound
generation. This model has three major components, namely vortex formation, vortex
strength and velocity, and vortex motion and dissipation.

The separation points for vortex formation are determined though automatic shedding
criteria. The criteria contain three conditions, i.e. (1). the minimum area (between
0.001 c¢m? and 0.4 cm?); (2). the Mach number (greater than 0.01); (3). the first two
conditions exists for at least 2 ms. The time interval between shede vortices is modeled

as a random variable Typ.q With its mean value given by:

D

ST (2.5)

E{Tsheat =
where D is the diameter of jet exit, St is the Strouhal number and Uj is the jet velocity,

respectively.

The vortex strength and the velocity are given by:

I' = 0.5U, Tsheq (2.6)

e = (1 — 0)T + a—20f (2.7)

£l

where T denotes the vortex circulation, ., denotes the velocity of the new vortex, ¥
denotes the velocity of the previous vortex at axial location z, 7 denotes an unit vector
with its direction as the vocal tract wall at axial location z, v, and w, denotes the
components of 7 and 0 in the axial direction, respectively. The parameter o is the cosine
of the angle between the local wall and the direction of vortex velocity ¢.

Vortices in the flow are managed in a module called vortex tracker which associate

each vortex with its own location, velocity, strength and lifetime. The velocity and
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strength of vortex are computed in Eqgs. (2.6) - (2.7). The lifetime is specified as the
axial distance the vortex travels and is experimentally determined to be 4D. Since the
vortices move much slower than the sound propagation, a first order approximation is

sufficient for updating their positions. The vortex location &, at iteration 7 is given by:

By = Tpo1 + Ui T (2.8)

Finally, the aeroacoustic source contribution to the acoustic field is computed at each
iteration by computing the contribution due to each vortex contained within the vortex

tracker. The sound pressure p due to each individual vortex is given by:

— 27T Po

D 7 0] (2.9)

p= Z%AQW[P « - 0]d0 =
where A is the vocal tract area at the vortex lbcation, 7, is the radius of the vortex
ring, (Aj is an unit vector with the mean flow direction, pp is the ambient density of air.
The symbols X and - denotes the outer product operation and inner product operation,

respectively. As vortices convect, they excite different tubelets along the vocal tract.

therefore, the source is both spatially and temporally distributed.

2.2.3 Unvoiced Speech Sound Production Model

In his recent paper [62], Krane extend Howe’s solution of convective wave propaga-
tion and proposed a general unvoiced speech production model. The physics of sound
production by vocal tract airflow is not only the primary mechanism of unvoiced sound
production, but also a secondarsf source of sound in voicing. The sound propagation
inside vocal apparatus consists of two modes, namely the sound mode (irrotational and
compressible) and the flow mode (rotational and slightly compressible). The sound or

propagation mode has been extensively studied using the linear acoustics and signal pro-
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cessing techniques and result in successful speech production model such as the source-
filter model described in previous section. On the other hand, the study of the flow
or convective mode and its contribution to sound production have been neglected or
avoided in the speech science literature for a long time. Traditional approach to analyze
air motion in vocal tract has following misunderstandings. First, the flow is assumed
to be irrotational and quasi-steady, and therefore the Bernoulli equation is sufficient to
describe the relationship between pressure and particle velocity. Second, the acoustic
excitation due to the flow is simply described by band-limited white noise. On the other
hand, it is shown that in general, the characteristics of the aeroacoustic source are gov-
erned by the strength and spatial distribution Qf the jet velocity field, the convection
speed and temporal spacing of vortical disturbances and the axial extent and shape of
the vocal tract. For turbulent jets, the shape of the vocal tract is the dominant factor in
determining the spectral content of the source.

Krane's model provides a complete framework for issues regarding aeroacoustic source
strength, spatial distribution, frequency content, and impedance. Through the study
of aeroacoustics, which describes the interaction between flow mode and sound mode,
Krane’s model leads to three major findings. First, the key ingredient of the flow mode is
the fluid vorticity, which acts as a means of storing air inertia as rotational motion of fluid
particles. Second, due the low-Mach number, high-Reynolds number nature of flows in
unvoiced speech production, the production of sound by speech airflows is very inefficient
and in general does not affect the behavior of the ﬂow.mode. The aeroacoustic source
characteristics depénd on the shape of the vocal tract and the airflow speed. Third, if
the source region is acoustically compact, the source spectrum can be written as the
convolution of two signals, namely the waveform of a single vortex passing through the
source region and a function describing the arrival of vortices in the source region, scaled

by the strength of the particular vortex. It’s the vortex arrival statistics that determine
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whether the source spectrum is dominated by the vorticity field or the wall shape. If
the vortex arrival time series is highly coherent periodic, it will dominate the source
spectrum. On the other hand, if the vortex arrival time series is broadband, the vocal

tract shape will dominate the source spectrum. More details can be found in [62]

2.3 Overview of Articulatory Speech Model

2.3.1 Coker’s Model

In 1976, Coker proposed an articulatory model for unlimited vocabulary speech syn-
thesis [14]. Fig. 2.9 shows the representation of the midsagittal section of the human
vocal tract. The articulator was described by eight physical parameters : tongue body
height (Y); anterior/posterior position of the tongue body (X); pharyngeal opening (P);
tongue tip height (B); tongue tip curliness (R); lip opening (W); lip roundness (C); and
vocal tract length (L). In 1983, Levinson and Schmidt [64] proposed an unconstrained
optimization technique to estimate the Coker’s articulatory model parameters based on
minimizing the difference between the natural speech spectra and the model spectra com-
puted from the Webster equation. We implemented this technique on a Sun workstation

to get the stationary articulatory model parameters for fifty-two English phone units.

2.3.2 Mermelstein’s Model

In 1973, Mermelstein proposed an articulatory model as shown in Fig. 2.10. This
model permits simple control over a selected set of articulatory parameters, namely,

tongue body center (C), velum (V), tongue tip (T), jaw (J), lips (L) and hyoid (H) [71].
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Figure 2.9 Coker’s articulatory model.

The positions of these articulators determine the vocal tract length and cross-sectional

areas, following the estimation of the vocal tract profile in the midsagittal plane.

C - Tongue body center

V - Velum

T - Tongue tip
J - Jaw

L -Lips

H - Hyoid

Vocal tract center line
1

Figure 2.10 Mermelstein’s articulatory model.

Mermelstein’s model consists of fixed and movable structures to enable it to articulate
movements of the vocal tract during speech production. Fixed structures are approxi-
mated by straight segments and circular arcs, and represent the rear pharyngeal wall

(GR), the soft palate (RM), the hard palate (MN) and the alveolar ridge (NU). These
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structures form the posterior-superior vocal tract outline which is considered fixed with
the exception of the region among the upper lips. Movable structure approximate the
inferior-anterior vocal tract outline and are classified into two categories: those whose
movements are independent of other articulators (velum, hyoid bone and jaw), and ar-
ticulators whose position is a function of other articulators (tongue body, tongue tip and
lips). For example, the movement of the tongue tip is relative to that of the tongue body
which itself depends on the position of the jaw. The jaw and the velum are considered

movable structures with one degree of freedom. All other articulators have two degrees

of freedom.

Table 2.1 Identification of parameters and imposed limits for Mermelstein’s articulatory
model [71].

| No. | Name | Meaning | Lower limit | Upper limit |

1 | rtp tongue radius [cm] 0.5 3.5
2 | tejp jaw angle [deg] 10.9 28.0
3 | xcp tongue center z [cm] 4.0 10.0
4 | stp | tongue blade length [cm] 2.0 4.4
5 | xclp| 1lip protrusion z [cm] 0.36 1.89
6 | xhp hyoid position z [cm] 5.20 7.60
7 | ycp tongue center y [cm] 1.48 7.48
8 |telp| tongue elevation [deg] 68.2 96.8
9 | cylp lip height y [em] 0.93 1.32
10 | yhp hyoid position y [cm] 7.43 9.83
11 | vel velum opening [cm?] 0 2

By proper selection of the various positions of the articulators, Mermelstein’s model
is able to generate physiologically possible shapes that span the entire articulatory space.

Table 2.1 shows the limits of the articulatory parameters in Mermelstein’s model
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Figure 2.11 The task dynamic articulatory model, with tract variable degrees of freedom
indicated by arrows.

2.3.3 Haskins Lab’s Model

During the past decades, Saltzman and Rubin et al. in Haskins’s lab have proposed a
task-dynamic model for speech production [93], [95], [96]. Their model was constructed
based on a midsagittal view of the vocal tract and a simplified kinematic description of
the vocal tract’s articulatory geometry. Fig. 2.11 shows the midsagittal view of the task-
dynamic model. The presented model are associated with the control of bilabial, tongue-
dorsum and lower-tooth-height constrictions. The creation and release of constrictions of
differing degree in different regions of the vocal tract are described in two steps. The first
step entails defining time-invariant dynamics at the level of tract-variable coordinates.
The second step is to transform the tract-variable system into an explicitly articulatory
set of coordinates to describe the articulatory details required for an adequate simulation

of speech production. Table 2.2 shows the relationship between tract-variables and model

articulators.
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Table 2.2 Relationship between tract-variables and model articulators.

| Name | Tract variables Model articulators |
LP lip protrusion upper and lower lips
LA lip aperture upper and lower lips, jaw
TDCL || tongue dorsum constrict locatiom tongue body, jaw
TDCD || tongue dorsum constrict degree tongue body, jaw
LTH lower tooth height jaw
TTCL tongue tip comstrict location tongue tip, tongue body, jaw
TTCD tongue construct degree tongue tip, tongue body, jaw
VEL velic aperture velum
CLO glottal aperture glottis

In a more recent reference, Rubin et al. have introduce three more tract vari-
ables, namely, subglottal pressure, transglottal pressure and delta virtual fundamental
frequency to extend the previous task-dynamic model for better description of speech

production. Details of the new model can be found in [94].

2.4 Overview of the Motor Control of the Articula-

tor

The production of speech is portrayed traditionally as a combinative process that
uses a limited set of units to produce a very large number of linguistically “well-formed”
utterances [13]. Segmental speech units (such as phonemes) are usually seen as discrete,
static and invariant across a variety of contexts. Putatively, such characteristics allow
speech production to be éenerative, because units of this kind can be concatenated easily
in any order to form new strings. During speech production, the shape of the vocal tract
changes constantly over time. These changes in shape are produced by the movements

of a number of relatively independent articulators (e.g., velum, tongue, lips, jaw etc).
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Although the speech segmental units are discrete, the articulatory patterns movements
of different articulators are interleaved into a continuous gestural flow.

Much theoretical and empirical evidences from the study of skilled movements of
the limbs and speech articulators supports the hypothesis that significant informational
units of action do not entail rigid or hard-wired control of joint and muscle variables.
Rather, these units or coordinative structures must be defined abstractly or functionally
in a task-specific, flexible manner. In next section, we want to investigate the motor

control of the speech articulator according to some dynamical model or minimum cost

hypothesis.

2.4.1 A Dynamical Model of Articulation

Intergestural
Coordination

A

|

(gestural activation
variable)

Interarticulatory
Coordination

(tract variables:

model articulatory
variables)

Figure 2.12 Schematic illustration of the two-level dynamical model for speech produc-
tion.
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In [95], Saltzman and Munfall proposed a dynamical model of articulation with two
functionally distinct but interacting levels. The intergestural level is defined accord-
ing to both model articulator and tract variable coordinates. Tract variables (e.g. bil-
abial aperture) are the coordinates in which context-independent gestural “intents” are
framed; and model articulators (e.g. lips and jaw) are the coordinates in which context-
dependent gestural performance are expressed. Fig. 2.12 shows the schematic illustration
of the two-level model for speech production, with associated coordinate systems indi-
cated. The solid arrow line from the intergestural to the interarticulator levels denotes
the feedforward flow of gestural activation. The dashed arrow line indicates feedback of
ongoing tract variable and model articulator state information to the intergestural level.
Invariant gestural units are posited in the form of relations between particular subsets
of these coordinates and sets of context-independent dynamical parameters (e.g. target
position and stiffness). Contextually-conditioned variability across different utterances
results from the manner in which the influences of gestural units associated with the
utterances are gated and blended into ongoing processes of articulatory control and co-
ordination. The activation coordinate of each unit can be interpreted as the strength
with which the associated gesture attempts to shape vocal tract movements at any given
point in time. The tract variable and model articulator coordinates of each unit specify
the particular vocal-tract constriction (e.g. bilabial) and set of articulators (e.g. lips
and jaw) whose behaviors are directly affected by the associated unit’s activation. The
intergestural level accounts for patterns of relative timing and cohesion among the acti-
vation intervals of gestural units that participate in a given utterance, e.g., the activation
intervals for tongue-dorsum and bilabial gestures in a vowel-bilabial-vowel sequence. The
interarticulator level accounts for the coordination among articulators evident at a given
point in time due to the currently active set of gesture, e.g., the coordination among lips,

jaw, and tongue during periods of vocalic and bilabial gestural coproduction [95].
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These attributes of task-specific flexibility, functional definition, and time-invariant
dynamics can be incorporated into a task — dynamic model of coordinative structures.
Each gesture in an utterance is associated with a corresponding tract-variable dynamical
system. In this approach, all such dynamical systems are defined as tract-variable point-
attractors, i.e., each is modeled by a damped, second-order linear differential equation
(analogous to a damped mass-spring). The tract-variable motion equations are defined

in matrix form as follows:

7= M"Y(—BZ - KA\Z%) (2.10)

where 7 is the m x 1 vector of current tract-variable positions, 7 and % are the first
and second derivatives of Z respect to time; M is a m x m diagonal matrix of inertial
coefficients; B is a m x m diagonal matrix of tract-variable damping coeflicients; K is a
m x m diagonal matrix of tract-variable stiffness coefficients; and AZ = Z— %, where 2 is
the target or rest position vector for the tract variables. The components of B, K, and Zy
vary during the utterance according to the ongoing set of gestures being produced. For
example, different vowel gestures are distinguished in part by corresponding differences
in target positions for the associated set of tongue-dorsum point attractors. Similarly,
vowels and consonant gestures are distinguished in part by corresponding differences in
stiffness coefficients, with vowel gestures being slower (less stiff) than consonant gestures.
Thus Eq. (2.10) describe a linear system of tract-variable equations with time-varying
coefficients, whose values are functions of the current active gesture set.

Furthermore, a dynamical system for controlling the model articulators is specified by
expressing tract variables (Z, Z, Z’) as functions of the corresponding model articulator
variables (g, 5, 5) The tract variables of Eq. (2.10) are transformed into model

articulator variables using the following direct kinematic relationships:
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7= Z(¢) (2.11)

B O (212)

F= (@6 + (6,86 (213)

where ¢ is the n X 1 vector of current articulator positions. J (5) is the m x n Jacobian
transformation matrix whose elements J;; are partial derivatives —g% evaluated at the
current qg The elements of J and J reflect the geometrical relationships among motions
of the model articulators and motions of the corresponding tract variables. Using the
direct kinematic relationships in Egs. (2.11) - (2.13), the equation of motion derived for

the actively controlled model articulators is given by:

= (MY ~BJ§— KAZP)) — J*J§ (2.14)
where 5 4 is an articulatory acceleration vector representing the active driving influ-
ences on the model articulator; J* = W1JT(JW~1JT)"1 is a n x m weighted Jacobian
pseudoinverse where W is a n X n positive definite articulatory weighting matrix whose
elements are constant during a given isolated gesture. The pseudoinverse is used because
there are a greater number of model articulator variables than tract variables for this task.
More specifically, using pseudoinverse provides a unique, optimal least square solution
for the redundant differential transformation from tract variables to model articulator

variables that is weighted according to the pattern of elements in the W matrix.

2.4.2 Motor Control Based on Minimum Cost Principles

In 1983, Nelson proposed several articulator motor control system based on some
minimum cost principles [74]. For displacement of a mass m, along the dimension z with

instantaneous velocity v, the equations governing the motion are:
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Lo, ) ) gt (215)

where f,(t) is the net applied force along the = dimension and fy(t) is the net dissipative
force (friction) resulting from the movement. We assume for the range of displacements
and velocities remaining within some linearity region, L, that the mass is constant and
the dissipative force is a linear function of the velocity. We further assume that there
is some limit Fi,.z, on the magnitude of the applied force. If we now define the control

action u(t) as applied force per unit mass (acceleration), we can get:

fa(t) Fma:z:
= < = .
ult) === ()] < Umae = = (2.16)
The equations of motion can be written in the normalized form:
z(t) =v(t), z(0)=0, z(T)=D (2.17)
o(®) = u(t) — bu®), v(0)=0, v(T)=0, |u(®)|< Unau (2.18)

Because they are invariant under translation in z, Egs. (2.17) - (2.18) can describe
each segment of a sequence of motions along the dimension z of various distances D and
movement time (durations) T' between successive equilibrium states (z = z;, v = 0).
Each segment of the sequence depends only on the initial state (z;, 0) and the control
force action u(t) over the current movement segment. Thus the control strategy for each
segment may be considered independently from that in the other segments.

The performance objectives can be expressed in terms of minimizing some measure of
physical cost associated with accomplishing the movement. Five measures of cost might

be considered in relation to skilled movements are:

min{time cost} =min{T} ' (2.19)
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mind{ force cost = min{A} = min{mazicom|u(t)|} (2.20)

1 (T
min{impulse cost} = min{l} = mzn{—Z-/O lu(t)|dt} (2.21)
min{energy cost} = min{E} = min{ 2an“ /0 i u?(t)dt} (2.22)
1 /T
min{jerk cost} = min{J} = min{s /0 a2(t)dt} (2.23)

where & is the rate of change of acceleration (jerk) of the movement. Note that the
minimum-jerk cost solution will result in z(t) trajectories which are equivalent to the
cubic spline interpolation results. Furthermore, the z(t) trajectory of the minimum-
jerk cost principle are similar to the trajectories generated by the task-dynamic model

described in previous section.
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CHAPTER 3

ESTIMATION OF DYNAMIC ARTICULATORY

PARAMETERS

3.1 Cubic Spline Method

A major difficulty in generating natural-sounding speech using articulatory synthesis
is the lack of sufficient data on the motion of the articulators thét control the parameters
of the synthesizer. Suppose that we have N discrete phonemes with their static articu-
latory parameters denoted by f;;,4=1,2,---,N, j=1,2,---, M, here M denotes the
number of articulatory parameters per phoneme (M = 8 in our case). Our objective is
to estimate the articulatory parameters of the K frames between consecutive phonemes
7and 7+ 1. Wé can solve this problem by obtaining a cubic spline function which inter-
polates the function f at zg, 21, --,zn. In each of the subintervals I; = [%;, Zs+1] Of the
interpolation range, s is a polynomial of degree at most three. Denote this polynomial

by s;, then we have:

s(z) = s;(z) z€l,i=01,---,N-1 (3.1)
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A convenient formulation of s; will be in terms of the distance of z from the two ends

of the interval I;, and so we can define the new variable u; by:

U =T — T4 1=0,1,---,N (3.2)

Observe that %‘j = 1 for every i, and so differentiation or integration with respect
to z and with respect to u; will be equivalent. We denote the step lengths between the
knots by h; = T;41 — T; = U; — Usy1. The conditions which must be satisfied are that
s must interpolate f at zg,z1,---,Zy and 3, § must be continuous at the interidr knots
Zi, %9, ,In-1. We will begin with the continuity of §. On each of the intervals [;, s is

a cubic, and so 5 is the first-degree polynomial §;. Let’s denote its values at the knots

by:
S(ZLL) =Ai, 7= 0,1,"',N (33)
Since §; is a linear function, we have, for each 1,

5i(z) = Az — 1) ];* Ai(Z — Bip1) _ A ; Aty (3.4)

We may integrate Eq. (3.4) twice to get:

3 3
Ay — Augy,

o +czr+d (3.5)

S; (iL‘) =
where ¢ and d are constants of integration. This can be conveniently written in the form:

Aipud — Al
si(z) = HUZGh’ “tl _ By + Ciyg (3.6)

Now we should choose the coefficients of Eq. (3.6) forz=0,1,---, N —1 so that both

the interpolation conditions and the first-derivative continuity are satisfied. Consider
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first the interpolation conditions. At the point z;, we have u; = 0 and u;y; = —h;.
Denoting f(z;) by f; and substituting these values into Eq. (3.6), we get:

A;h?
=—-’é—z—+Bihi, 1=0,1,---,N—1 (37)
Aih?

fi

fi+1 = + Chi, 1=0,1,---,N—1 (38)

Solving Eqgs. (3.7) - (3.8) for B; and C; yields:

i A
=y -5 (3.9)
_ fin Al
N (3.10)

The final system of equations is derived from the first-derivative continuity condition.

These equations are obtained by differentiating Eq. (3.6) with respect to z. We obtain:

2 2
Aiprui — Aiugy

from which we may deduce that:

The continuity of § will be guaranteed if for every interior knot z;, we have 3; (z;) =

$;_1(z;) which yields the equation:

(hi1 + hi)A;

5 +B;—Ci~(Bi1i—Ci-1)=0 =12\ (3.13)

From Egs. (3.9) - (3.10), we can get:

B, —C, = (A1 ; Adhi leh._ Ji i=0 1, N, (3.14)

Denote -fi‘“,il—“fz by d; and substituting Eq. (3.14) into Eq. (3.13) for both ¢ and ¢ — 1, we

get:

hi—lAi—l n (hi—l —+ hZ)Az n hz'Ai+1

=d; —d;_ ':1,2,...,]\/’__1 15
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Multiplying Eq. (3.15) by 6 and denoting d; — d;—1 by Ad;_;, the natural cubic

spline interpolating f at zg, z1, -+, Zn is obtained with the coefficients A; satisfying the

tridiagonal system:

2(ho + h1) hi 0

ki 2(hy + hg)  he

0 e hn-s 2(hn-3+ hy-2)
i 0 .. 0o Bv_o

hn-a

2(hn—2+ hy-1) |

A
As

An_3
An_1

r -

6Ady
6Ad;

6AdN_3

] 6 AdN_o |
(3.16)

The system described by Eq. (3.16) is an interpolation system. The shape it assumes

is the shape with minimum stored energy, and it turns out to be a natural spline.

3.2 Signal Approximation Method

3.3 Review of the Signal Representation Techniques

Interpolation is one of the basic operations in signal processing. It is used extensively

in image reconstruction, magnetic resonance imaging and other signal processing appli-

cations. Suppose that we are given an vector space of functions X and a set of samples

from a function z(t) € X, the objective of interpolation is to find an element & € X that

is the optimal approximation to z(t) according to certain minimum error criterion. The

traditional signal processing theory uses the sinc-interpolation for bandlimited functions

based on the Shannon’s sampling theory which is stated as following. If the highest

frequency contained in an analog signal z,(t) is Fy = B and the signal is sampled at

a rate Fy; > 2F,,, = 2B, then x — a(t) can be exactly recovered from its sample values
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using the interpolation function:

g(t) = %tgﬁ (3.17)
r)= - almole— ) (3.18)

where z(n) = z,(F) are the samples of T4 ().

In practice, most of the researchers use short kernel methods such as bilinear interpola-
tion, cubic convolution or polynomial spline interpolation, which are much more efficient
to implement, especially in higher dimensions. These methods are all convolution-based
in the sense that they use an interpolation model of the form:

z_

sn(z) = Z Ch(k)éﬁ(h k) (3.19)

keZ

where h is the sampling step and ¢(z) is the basic interpolation kernel. The expan-
sion coefficients in Eq. (3.19) typically correspond to the samples of the input function
s(z) taken on a uniform grid: c;(k) = s(hk) Fig. 3.1 shows the block diagram of the

convolutional-based interpolator. Where the impulse response of the reconstruction filter

is wn(z) = ¢(})-

sampling synthesis
(1, 5)(x)

s(x) @ s(hk) (Ph(x)

3 8(x-hk )

k€Z

Figure 3.1 Block diagram of the convolutional-based interpolator

More recently, researchers have proposed a systematic formulation of this class of
representations using the Hilbert space framework [130]. The corresponding least square

(LS) solution can be obtained through a simple modification of the basic interpolation
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procedure, which consists of applying an appropriate prefilter to s(z) prior to sampling
as shown in Fig. 3.2. Where the signal approximation P,s corresponds to the orthogonal
projection of s onto the signal subspace V;, = span{¢(% — k) }rez. The impulse response
of the optimal prefilter is A~ - p(—%).

analysis  sampling synthesis

s(x) L. cy(k) (£, s)(x)
- 5 (ph(_x) " (ph (x)

3 8(x-hk )

k€Z

Figure 3.2 Block diagram of the convolutional-based least squares signal approximation.

The non-bandlimited convolution-based signal representations have a lot of advan-
tages for signal processing such as computational efficiency and simplicity of implemen-
tation. In [130], the authors answered two fundamental question in this signal repre-
sentation. First, they provided quantitative error estimates that can be used for the
appropriate selection of the sampling step h. Secondly, they compared three signal
approximation methods namely least squares approximation, interpolation and quasi-
interpolation and derived some quantitative error bounds on these methods. Before the

error bounds analysis of these methods, we will first introduce some notations.
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3.4 Notations

3.4.1 L, Space

L, is the space of measurable, square-integrable, real-valued functions or signals

s(z),z € R. It is a Hilbert space whose Ly-norm is induced from the inner product:

< s(a),r(a) >= [ " o(@)r(@)ds = 2—17; / :’° @) R(w)dw (3.20)

where S(w) and R(w) denote the Fourier transforms of s(z) and r(z), respectively. The
L, is defined as:
. +oo 1
Islloo = lim [/ |s(z)[P]» = sup|s(z)] (3.21)
-0 z€R

p—+oo
The class of smoothness of a signal will be specified by its distance to the Sobolev space

WE (or W), which is the space of functions whose L first derivatives are defined in the

Ly (Loo) sense.

3.4.2 Convolution-based Signal Representations

A general approach to specify continuous signal representation is to consider the class
of functions generated from the integer translates of a single function ¢(z) € Ly. We can
adjust the resolution by varying the sampling step h and rescaling ¢ accordingly. The

corresponding function space V() C Ly is defined as:

Va(e) = {sn(e) = 3 calk)o(5 = K)len € b} (3.22)
keZ

where [, is the vector space of square-summable sequences. The only restriction on the
choice of the generation function ¢ is that the set @(z/h — k), is a Riesz basis of

V(). This is equivalent to the condition:

0< A< a,(w)=Y |®(w+2mk)|]> < B < +oo ae. (3.23)
keZ
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where ®(w) is the Fourier transform of ¢(z), and the constants A and B are the Riesz
bounds. This constraint ensures that each function sp(z) in Vi (¢) is uniquely character-

ized by the sequence of its coefficients cy (k).

3.4.3 Interpolation and Quasi-Interpolation

The simplest way to represent a continuous signal s(z) € L, in Vi(p) is to use
its samples as the coefficients of the representation in Eq. (3.22). The corresponding
interpolation operator, which is schematically represented by the block diagram in Fig.
3.1 is defined as:

| (Ins)(2) = 3 s(kk)e (5 — ) (3.24)

keZ
The operator I, is bounded, provided that the input signal is sufficiently smooth; for

example, s € Wj. Note that with this definition, the samples of the signal s(z) and of
its interpolation (I,s)(z) are not necessarily identical. To get a true interpolation (i.e.,
Vi € Z,5(%)|g=rk = (In8)(Z)|s=rr), We need to select a generating function @i € Vi(y)

that satisfies the interpolation property:
Pint(T)|z=tc = 6(k) (3.25)

where 6(k) denotes the discrete unit impulse at the origin. For a given subspace V4(¢) C
Ly, the interpolation function @i:(%) € Va(y) is generally unique.

Furthermore, we can relax the interpolation condition without any noticeable loss in
performance. This leads to the concept of a quasi — interpolation, which is a standard
notion in approximation theory, but has not yet been exploited in signal processing. By

definition, a quasi-interpolant of order L = n + 1 is a function g that interpolates all

polynomial p,(z) of degree n:

Vpu(z) € P*, > pu(k)pqr(z — k) = pa(z) (3.26)
kez
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where P™ denotes the space of polynomials of degree n. The equivalent formulation of

this condition in the frequency domain is:
Dor(w)|w=2mk = 6(K) (3.27)

0 (W)|wmzme =0, (m=1,---,L—1) (3.28)

where ®r(w) denotes the Fourier transform of pgr and <I>(Q"}) (w) denotes the m*® deriva-
tive of ®gs(w). In other words, ®or(€) = 1+ O(€F) as & — 0. Whether or not it is
possible to construct quasi-interpolants within a certain subspace Vi(¢) depends on its

order of approximation, which will be described in the Strang-Fix conditions.

3.4.4 Convolution-Based Least Squares

A more sophisticated approach for obtaining a representation of the signal s(z) € Ly
in Vi(p) is to determine its minimum Ly-norm approximation (orthogonal projection).

This least squares approximation is given by:

(Fas)(2) = 3 elk)el5 — k) (3.29)
keZ
o(k) = % < s(2), (3 ~ ) > (3.30)

b)= (3.31)
a,(w) = Zz |B(w +2n * )2 (3.32)

where ®(w) and ®(w) denotes the Fourier transform of ¢(z) and @(z), respectively.

The orthogonal projection operator on V() can also be expressed in the more com-

pact form:
+00 1

(Pus)@) = [ st)zK(G 3y (3.33)
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where K (z,y) is the reproducing kernel associated with the basic approximation space

Vi(p):
K(z,y) =Y oz~ k)p(y — k) (3.34)

kez

The only difference between the (quasi-)interpolation procedure and the least squares
approach is the presence of the prefiltering module, which has a role similar to the anti-
aliasing filter required in conventional sampling theory. In fact, if p(z) = sinc(z), then
the optimal filter is precisely shannon’s ideal lowpass filter with the appropriate cutoff

at the Nyquist frequency.

3.4.5 Strang-Fix Conditions

The Strang-Fix conditions relate the approximation power of the representation to
the spectral characteristics of the generating function and are described as following.
Let ¢ be a valid generating function with appropriate decay. The following statements

are equivalent [116}:

(1). The function spaces Vj(y) reproduce polynomials of degree n = L—1,
which is equivalent to say that there exists a function ¢gor € Vi(yp) (not
necessarily unique) that is a quasi-interpolant of order L.
(2). There exists a function ¢gr € Vi(yp) such that:
VzeR, > porlz—k)=1 (3.35)
keZ

Vz€R, > (z—k)™pgi(z—k)=0, (m=1,---,L—1)  (3.36)
keZ

(3). ®(w), which is the Fourier transform of ¢, is nonvanishing at the
origin and has zeros of at least multiplicity L at all nonzero frequencies

that are integer multiples of 2.
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(4). There exists a constant C such that approximation error at step size

h is bounded as:

Vs € WE, infoeulls —salls<C-hE- [Pl (337)

3.5 Pointwise Error Analysis

Although the Strang-Fix bound in Eq. (3.37) is of considerable theoretical interest,
it needs to be made more specific and quantitative to be of direct use for signal pro-
cessing. In this section, we will describe the pointwise error analysis of different signal
approximation methods. The proposition 1 is proved in [130]. We proved an improved
error bound for interpolation in proposition 2 and an error bound for LS approximation
in proposition 3. The basic tool for this pointwise analysis is the Taylor series expansion.
Specifically, if the signal s is (n + 1) times continuously differentiable (i.e. s € WZt),

we can write:

5(9) = () + (- )50 + Co L s0) 1 W= o0) 4 Brray) (339

[ty + (= )a)dr (3.39)

3.5.1 Interpolation Error

Let’s consider the (quasi-)interpolation error defined by;
z
s(z) = (Ins)(z) = s(z) — > s(hk)p(5 — k) (3.40)

kez
Replacing s(hk) by its Taylor series in Eq. (3.38) with ¥ = hk and using the quasi-
interpolation properties of ¢, we get:

—hL

3(a) = (Bs)(e) = 17—y Sk - Zyp(E — k) [ (L= 1)L D kb + (1 - T)a)dr]
(3.41)
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The only remaining terms are those associated with the remainders of the Taylor series
because ¢ is designed to perfectly interpolate all expansion terms up to degree n = L—1.
The uniform estimate of the error is given in the following proposition.

Proposition 1: If ¢ is a quasi-interpolant of order L with sufficient decay, then:

Vs e WE, |ls = (Ins)lloo < Copr - Y - |89 oo (3.42)

1
Cor =77 510 3 |o = klFlp(a — k) (3.43)
Ll z€[0,1] pez

Proof: See [130].

If (z) decays like O(z~(Z+D), we can improve our estimate by considering one more
term in the Taylor series expansion. In this section, we will give the detailed proof of the
following error bound.

Proposition 2:  If @ decays like O(z~(Z+1), then the pointwise estimate for s € WZX*!

is given by: ‘
5(2) — (he)(z) =~ B (E)s (2) + Ok (3.44)
Ep(z) = (-1)* gz(f ~ K)oz~ k) (3.45)
Proof: Let y = hk and substitute it into Eq. (3.38), we get:
s(hk) = s(z) + 3 E= D 0 4 (h’“L;,x)Ls(m (2) + Roa(hk)  (3.46)
pc !

(Ins)(a) = 3 s(hk)w(% — )

keZ
= Z s{x)o(= — k) + Z Z @#S(i)(x)W(% ~ k)
keZ i=1 keZ :
+}IL,' E; (h)S(L) (z) + %:ZRLH(hk)(p(% — k) (3.47)

where Er(z) is defined in Eq. (3.45). From the Strang-Fix condition in Egs. (3.35) -

(3.36), we get:

> s(@)p( — k) = s(c) (3.48)

53



2 s (z)p(E—k)=0, (i=1,---,L—1) (3.49)
kez h

Then we can get:

5(2) — (Ts)(@) + - Eu(D)8P(2) = X uaa(k)o(E )
keZ

(h)L—i—l

7 é(k—%)mw(%—k% /0 "1 = 7)Bs ) (rhk + (1 — 7)z)dr(3.50)
o)) 5+ 2 ()50 < M 3 R oGl [ () supecrlt™ @) dr
(3.51)

kL+1(pE_k.
T g~ H e )

= Cp 1 - B s [l = O(RFH) (3.52)

(5(z) — (Ins) (@) + }2, Eu(E)P(@)] < HEH s

This lead to the pointwise estimate of s in Eq. (3.44).

3.5.2 Least Squares Error

To simplify the analysis of error in the least squares case, we will use the reproducing
kernel formalism. For the generating function ¢ which satisfies the decay condition
lp(z)] < K- (1+|z[)™ M > L, an equivalent form of the conditions Egs. (3.35) -

(3.36) is as following [130]:

+c0o
cole) = [ K(oy)dy=1 (3.53)
em(z) = /_J:o(y? z)"K(z,y)dy=0, m=1,---,L—1 (3.54)

where the reproducing kernel K (z,y) is defined in Eq. (3.34). The corresponding point-
wise error bound of the least squares is given in the following proposition.
Proposition 3: If ¢ is such that the conditions in Eqs. (3.53) - (3.54) are satisfied,

then:
Vs € WL, |Is — (Pas)leo < Crrr - b2 - |80 (3.55)
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Crc = gysupl [ o= yl*K(@,0)]dd] (3.56)

Proof: Using Eq. (3.33) and Eq. (3.53), we can write the approximation error as:

s(2) = (Bus)(&) = [ ls(a) - s K (G 2y (357)

Substituting the Taylor series Eq. (3.38) into Eq. (3.57) and noting from Eq. (3.56) that

the integers of K(z,y) times difference monomials (y —z)™ are zero form =1,---, L—1,
we get:
s(2) = (Bs)@) = — [ Ruly)zK (- 2)dy (3.58)
The remainder can also be written in the standard form:
L
-
Rufy) = L= g (3.59)

where £ is some value between z and y. This lead to the estimate:
e e rl
5(2) = (Fus)(@)] < 77 s Plloo- [ 12 = FE2IKG )lay (360

We then make the change of variable 3 = ¥ and take the supremum at both sides of Eq.
(3.60) and get the error bound given in Eq. (3.55).

The pointwise error analysis indicates that the local behavior of the error is quali-
tatively the same in the (quasi-)interpolation and least squares cases. Comparing Egs.
(3.42) and (3.55) we can see that the only difference lies in the constants involved. In
[130], the authors claimed that the constant Cx 1, for the least square case is smaller than

the constant C, 1, for the (quasi-)interpolator case, but they didn’t prove this claim.

3.6 Ly Error Analysis

It’s usually more informative to investigate the behaviqr of the Ly error for quan-
tification purposes. The most appropriate tool for this type of analysis is the Fourier

transform. Before the error bound analysis, we first prove a useful lemma [130].
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Lemma 1: If F is M times continuously differentiable and F(™ (2rk) = 0 for all
keZ k#0andm=0,---,M—1, and FM decays fast enough so that 3 |F*) (¢ +
27k)| < C' < 400, then,
jw™

|3 Flw+2mk)| < & sup | 3 FON (6 + 2nk)|, Viw| < (3.61)
k£0 M! jgj<n k#0

3.6.1 Ly Error of Quasi-Interpolation

We can write down Eq. (3.24) in the frequency domain:

(L)) = 3 S(w+ %k)@(hm) (3.62)

keZ

where S(w), ®(w) and (I;;s)(w) denotes the Fourier transform of s(z), ¢(z) and (Is)(z),

respectively. This lead to the following error decomposition in the frequency domain.

- 2w
Sw) = (Ins)(w) = [S(W)(1 — ()] = [3_ S(w+ 5=k)@(hw)] = Br(w) + Ep(w) (3.63)
k50
where the Ej(w) and Er(w) denotes the in-band and out-of-band error components,
respectively. The Ly error bound of quasi-interpolation is given by the following propo-
sition.

Proposition 4: If ¢ is a quasi-interpolant of order L with sufficient decay, then:
Vs € WE |Is — Inslla < Cyr. - Rt . HS(L)HQ (3.64)

where C,, 1, is defined in Eq. (3.43).
The key idea of the proof of Proposition 4 is to use the error decomposition in Eq.

(3.63) and use the Taylor series expansion of 1 — ®(hw) and the Schwartz inequality. The

detailed proof was described in [130].
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3.6.2 Ly Error of the LS Approximation

The Fourier representation of the LS approximation of Eq. (3.29) is given by:

(Fis)w) = () Y B+ 20E)S(w + )
keZ
_ ®(hw + 27k) 27

where a,(w) is defined in Eq. (3.32). The approximation error in the Fourier domain

can be decomposed into two components.

S(w) — (P;Ls)(w) =e1(w) + es(w) (3.66)
oy e
erw) = 3 29 FHT B - S(w+ 2%]@) (3.68)

i Qo (P)

where e; (w) and es(w) denotes the in-band error and out-of-band error, respectively. The
L4 error bound of the LS approximation is given by the following proposition.

Proposition 5: If ®™(21k) =0, k€ Z, k#0andm=0,---,L — 1, then:

Vs € WE,||s — Pasllz < Kpar - B2 - [|s@0 g + Klay - X - ||sP]l3 (3.69)
1 1
Kopor = | S°(12)%) @ (€ + 2nk))| (3.70)

——— + — - Sup
L) A ¢ ¢ oy,
where A = inf,[a,(w)] is the lower Riesz bound.

The key idea of the proof of Proposition 5 is to use the error decomposition in Eq.

(3.66) and the Taylor expansion in Lemma I and the Schwartz inequality. The detailed

proof of this proposition is given in [130].

3.6.3 Comparison

The L, bounds in Egs. (3.64) and (3.69) are both consistent with the Strang-Fix

conditions in Eq. (3.37). However, the error bound for the LS case provides a finer
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characterization of the error. It consists of two distinct terms that represent the in-band
(e1) and out-of-band (ez) contribution of the error, respectively. For small value of h, the
first part of the error becomes neglible and the bound is dominated by the second O(hF)
term. The corresponding constant K;{ o turns out to be smaller than the constant C
in the Strang-Fix bound in Eq. (3.37)., or Cy in Eq. (3.64). This is a first indication
that there is an advantage in using least squares over interpolation. In addition, we note
that in the case of larger values of h, the first term in the LS error bounds becomes
dominant and it has the characteristic form of the error of an interpolator of order 2L.
We further observe that the function @7 (w) = l—ff%)—z— represents the frequency response
of an interpolator of order 2L, Therefore under the condition that ||ei]| > |les|, the
LS solution of order L should perform as well as the corresponding interpolator with
twice the order. This condition typically arises for larger h when the signal is somewhat

undersampled. In the following section, we will apply this observation to a specific task

where the observed discrete signal is undersampled.

3.7 Experimental Results

Suppose we are given N discrete phonemes with their static articulatory parameters
denoted by s,(n), m=1,2,---M, n=1,2,---,N, where M denotes the number of
articulatory parameters per phoneme (M = 8 in our case). Our objective is to estimate
the dynamic articulatory parameters between consecutive phonemes. This problem can
be restated as given N discrete observations s,(n) of M continuous function s,,(z), we
want to construct the functions 3,,(z) which is an “optimal” approximation to sp(z)
according to certain criterion. Due to the physical constraints of human vocal apparatus,
all of its parameters such as tongue body height have finite values and its movements

are continuous over time and their L** derivatives also have finite value (L > 2). Thus
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the functions s,,(z) € WL (WZL) and we can use the interpolation or LS approximation
discussed above to slove the dynamic parameter estimation problem. In this section, we
investigated the cubic spline interpolation and the LS approximation which is realized
by an “optimal” prefiltering followed by cubic spline interpolation.

The LS approximation in Eq. (3.29) can be implemented by first prefiltering the dis-
crete data $,(n) = $(2)|z=nn by an “optimal” filter P(z), which yields the sequence c(k)
in Eq. (3.29), and then by applying the interpolation in Eq. (3.24). In our experiment,

the Z-transform of the “optimal” filter for cubic spline interpolation ¢ is given by:

P(z) = S (*+2 ) +a(P+2%) + (PP + 2 ta(z+ 27 +ao
C16(P+270) +ba(2t 2+ b3(22 4 27) + ba(22 +27) +bi(z+ 27h) + by

(3.71)

Where ag = 6552, ay = 331612, a; = 2485288, ay = 4675014, by = 196, by = 10541,

by = 120608, b; = 467858, and by = 736952, respectively.

Dynamic Articulatary Parameter Estimation Using Cuble Spline and LS Approximation
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1.5

o Discrete data
-=- Cublc spline
LS approximation

The flrst articulatory parameter a1}

: ‘
50 100 150
Frama length

Figure 3.3 Estimated first articulatory parameter using cubic spline interpolation and
LS approximation

Figures (3.3) - (3.6) shows the estimated dynamic articulatory parameters (first ar-
ticulatory parameter to the fourth articulatory parameters) of English sentence “Where

were you while we were away” using the approximation methods discussed above. For
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Figure 3.4 Estimated second articulatory parameter using cubic spline interpolation
and LS approximation
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Figure 3.5 Estimated third articulatory parameter using cubic spline interpolation and
LS approximation
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Dynamic Articulatory Parameter Estimation Using Cuble Spline and LS Approximation
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Figure 3.6 Estimated fourth articulatory parameter using cubic spline interpolation and
LS approximation

each figure, the circle points denotes the static articulatory parameters computed from
the method in [64], for example, the first circle in Fig. (3.3) denotes the first articulatory
parameter (anterior/posterior position of the tongue body) of the first phoneme /W/;
the dashed line denotes the approximated continuous articulatory parameters using the
cubic spline interpolation method; and the solid line denotes the estimated continuous
articulatory pe‘xrameters using the LS approximation approach. We can see from these
figures the LS approach achieves smoother approximation of the articulatory parameter
trajectory over time (s, (t) and doesn’t have the “overshooting” problems of the cubic
spline methods. Omne hypothesis in human speech production is the “minimum jerk”
hypothesis which basically says that articulation is planned in order to minimize the
abrupt movements of neuro-muscular actions. We can see from these figures that the LS
solution tends to be consistent with this hypothesis because its trajectory doesn’t have

the abrupt changes which exist in some regions of the cubic spline solutions.
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Fig. 3.7 shows the snapshots of the estimated vocal tract movements of phoneme
/EH/ in /W/-/EH/-/R/ (“were”) using the LS approximation technique described above.
We can see from this figure that the LS approximation method can successfully estimate
the articulatory trajectory and thus the dynamic vocal tract movements. Although the
vocal tract shape of the phoneme /EH/ is unchanged with time when produced in iso-
lation, we can see from this figure that the vocal tract geometry of /EH/ will change
dynamically with respect to its neighbor phonemes and thus result in the change of its
acoustic properties at different time frames, which is called coarticulation in phonetics.
Once we can get a good estimate of articulatory parameter trajectories thus the dynamic
vocal tract movements, we can apply these dynamic geometries as the boundary condi-
tions of solutions of the Navier-Stokes equations and then synthesize high intelligibility,

naturally sounded continuous speech.

3.8 Discussion

Signal approximation in the framework of Hilbert space [130] provides a powerful
tool in signal processing because it is unbandlimited, more efficient to implement in high
dimensions and has more quantitative error bounds than the conventional interpolation
technique based on Shannon’s sampling theory. The pointwise error analysis indicates
that the (quasi-)interpolation and LS approximation are qualitatively the same. The
only difference is the constant terms which tend to be smaller for the LS case. For small
values of the sampling step h, the in-band component of the L, error of LS approach
becomes negligible and the bound is dominated by the out-of-band error term (O(h%))
and the LS error still tends to be smaller than the interpolation error in this case. For
larger values of A (undersampling), the first term in the LS error bounds becomes dom-

inant and it has the characteristic form of the error of an interpolator of order 2L. In
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both cases, the LS approach has a smaller error bound than the interpolation approach
although the difference becomes smaller as h goes smaller . Both the interpolation and
LS approximation approach can be successfully applied to estimate the continuous ar-
ticulatory parameter trajectory given the static parameters of the discrete phonemes.
Experimental results indicate that the LS approach achieves smoother estimation and

doesn’t have the “over-shooting” problem in the spline interpolation methods.
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CHAPTER 4

CONSTRUCTION OF ARTICULATORY MODEL

BASED ON MRI DATA

4.1 Problem Formulation

A qualitative physical picture of speech sound production has developed over a long
time. Fant and Flanagan [26], [31] first noted the necessity of turbulent airflow for
producing unvoiced and voiced sounds. Stevens [113] incorporated many ideas from the
aeroacoustics literature and concluded that the sound is produced not where the turbulent
flow is formed, but instead where that turbulent flow interacts with an obstacle such as
teeth in the vocal.apparatus. Shadle [102] strongly suggested that the sound produced
by airflow in the vocal tract is sensitive to the three-dimensional details of vocal tract
geometry, so that a simple axial area distribution may not be enough to characterize the
vocal tract for the purpose of producing speech sounds.

Traditional articulatory models use 7 — 15 physical parameters to model the mid-
sagittal section of the human vocal tract and use certain error minimization criterion

to estimate the articulatory parameters from the measured acoustical parameters (usu-
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ally called the inverse problem) [14], [67], [71], [103], [95], [112]. The disadvantage of
this type of articulatory models is that they are basically 2-D models and it’s diffi-
cult to overcome the ambiguity problem because there is a non-denumerable infinity of
area functions corresponding to a given set of acoustical parameters (such as formant
frequencies). Furthermore, these articulatory models can’t get fine details of the sharp
constriction geometry of the 3-D vocal tract which is important for the analysis of airflow
inside the vocal apparatus. An alternative is to directly measure the vocal tract shape
using the X-ray or magnetic resonance imaging (MRI) techniques. The disadvantage of
this approach is that it will produce a very high dimensional signal space. For exam-
ple, a typical MRI image of an English phoneme contains thousand of data points and
thus make it impossible for direct analysis. However, a number of studies suggest that
articulatory movements in speech can be approximately modeled using a few elementary
articulatory parameters [75], [114], [38]. In this chapter, we propose a latent variable
model-based method to reduce the dimensionality of the MRI vocal tract shape data.
Our objective is to construct an articulatory speech model with a few parameters which

still can represent the fine details of the 3-D vocal tract shape for different phonemes.

4.2 Review of dimensionality reduction methods

Several techniques to extract the model parameters or other kind of condensed infor-
mation from high dimensional data have been developed. One type of these techniques
is based on linear combination of the data vector components. We refer to such linear
combination as linear indices and represent them using a D-dimensional basis vector
7. The score of a D-dimensional observation data ¢ with respect to index ¥ is thus the
projection of ¢ on 7, i.e., ¥7 t= Zle v;t;. For example, Nguyen [77] applied the discrete

cosine transform (DCT) to the electropalatographic (EPG) frames considered as images
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to obtain several linear indices, corresponding to low spatial frequencies. The disad-
vantage of this method is that the set of indices is fixed across data sets (either using
DCT or other linear mapping) and is usually insufficient to capture the inter-speaker and
intra-speaker differences. Another type of methods use some linear approach to extract
structure from a data set without requiring any a priori knowledge about it, such as
principal component analysis (PCA), rotated principle component analysis (RPCA) and
factor analysis (FA) [38], [125]. Other researchers use some nonlinear methods such as
neural network (NN) to find the relationship between the articulatory model parameters
and the observed data sequence [76], [47]. Usually the NN approach will infer a set of
basis vectors that spans a subspace similar to that defined by the PCA [4], [10]. However,
these methods lack a natural interpretation as probability model. In this work, we are

concerned with methods that explicitly define a full probability model.

4.3 Latent Variable Models

The assumption of a latent variable model is that the observed high-dimensional data
is generated from an underlying low-dimensional process. The high dimensionality arises
from several reasons, including stochastic variation and the measurement process [111].
The objective is to learn the low dimensional generating process (defined by a small
number of latent wvariables or hidden causes) along with a noise model, rather than

directly learning a dimensionality reduction mapping.

4.3.1 Definition of general latent variable model

Consider an observed sample in data space {f;}2_, C RP of N D-dimensional real

vectors that has been generated by an unknown distribution. In latent variable modeling
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we assume that the distribution in data space R is actually due to a small number
L < D of latent variables acting in combination. We refer to this L-dimensional space
as the latent space. Thus, a point # in latent space R’ is generated according to a
prior distribution p(Z) and is mapped onto data space " by a smooth mapping f.
Because f(R”) is an L-dimensional manifold in RP, in order to extend it to the whole
D-dimensional data space we define a distribution p(£]Z) = p(£|£(Z)) on R, called the
noise or error model. The prior in latent space p(Z), the smooth mapping f and the
noise model p(£]%) are collectively called parameter set ©. In latent variable modeling
these parameters are typically maximized according to the maximum likelihood (ML)
criterion of the observed data given the parameters, p(f,|©). This optimization is often
implemented using an expectation-maximization (EM)algorithm [19].

In summary, a latent variable model is defined by:

1. the functional form of the prior p(Z) in latent space;
2. the smooth mapping f : RF — RP from latent space to data space;

3. the noise model p(]Z) in data space.

Fig. 4.1 illustrates the idea of latent variable model with a three-dimensional data

space and a two-dimensional latent space.
The joint probability density function (pdf) in the product space R x R is p(t, %)

and integrating over latent space gives the marginal distribution in data space,

v = [ o D)2z = [ pEl2)p(@)dz (4.1)

The log-likelihood of the parameters given the sample {t 3, is:

1(6) = log [] pE16) = 3. logn(:16) («2)

n=1 n=1
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Latent space of dimension L=2

Manifold M
Data space of dimension D=3

Figure 4.1 Schematic illustration of a latent variable model with a three-dimensional
data space and a two-dimensional latent space.

where the parameter set © is estimated using the maximum likelihood (ML) criterion
©* = argmazel(©) corresponding to a local maximum of the log-likelihood. Once the
parameters © are fixed, Bayes’ theorem gives the posterior distribution in latent space
given a data vector t, i.e., the distribution of the probability that a point Z in latent

space was responsible for generating .

a7 PEHAP(@E) _ _ p(HZ)p(3)
=00 T TeemeE 3

Summarizing this distribution in a single latent space point Z* results in a reduced-
dimension representative of ¢. This defines a corresponding mapping F from data space
onto latent space, so that every data point ¢ is assigned a representative in latent space,
T = F(f) Thus, it can be considered as an inverse mapping of f. This mapping F
will be most successful when the posterior distribution p(flf) is unimodal and sharply
peaked. Typical choices for F(%) are the minimum mean square error (MMSE) estimator
E{Z|t} or the maximum a posteriori (MAP) estimator argmazzp(Z|f). On the other
hand, applying the mapping f to the reduced-dimension representative we obtain the

reconstructed data vector £* = f(#*). The reconstruction error for that point £ is defined
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in terms of some distance A(f,#*) in data space and the average reconstruction error for
the sample as:
1 &,
En =2 Aty ty) (4.4)
N n=1
For example, the Euclidean distance provides with the mean squared error criterion
By = % Lot — G115
In this section, we will investigate a specific latent variable model, namely the factor
analysis. In the FA case, the parameters of the model are estimated using the EM
algorithm [19]. The E-step involves estimating the posterior distribution of the latent
variables using the current parameter values. The M-step is a maximization of the log-
likelihood function in which the posterior distribution estimated in the E-step is used to

fill in the latent variables.

4.3.2 Factor Analysis

Factor analysis uses a Gaussian distribution prior and noise model, and a linear

mapping from the data space to the latent space. Specifically, a FA model is defined by:
1. The latent space prior p(Z) has unit normal distribution:

p(%) ~ N(0,1) (4.5)

The latent variable 7 is often referred to as the factors.

2. The smooth mapping f is linear:

F@) =AZ+ (4.6)

The columns of the D x L matrix A are referred to as the factor

loadings.
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3. The data space noise model is normal centered in f(Z) with diagonal

covariance matrix &:

p(HlZ) ~ N(£(2), ®) (4.7)
The D diagonal elements of ® are referred to as the uniqueness.

The marginal distribution in data space is normal with a constrained covariance
matrix. Note that Eqs. (4.5) - (4.6) define a conventional two-way factor analysis. In
three-way factor analysis such as PARAFAC, the smooth mapping function f(Z) in Eq.

(4.6) is nonlinear.
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CHAPTER 5

VOCAL FOLD EXCITATION MODELS

In articulatory synthesis, the vocal tract must be excited by some appropriate signal.
The choice and method employed to excite the synthesizer play a vital part in determining
the spectral characteristics and the degree of naturalness of the synthesized speech. Most
speech synthesizers based on LPC techniques assume source-tract separability. For voiced
excitations, a sequence of impulses is generated with the spacing determined by the
desired fundamental frequency. The unvoiced excitation is generated by a band-limited
white nosie signal. In order to incorporate source-tract interaction into an articulatory
synthesizer, a more realistic model of the glottal excitation must be considered. The
following sections present two methods for voiced excitation : parametric models of the

glottal excitation and the multi-mass model of the vocal fold.

5.1 Parametric Models

Holmes [42], Rothenberg [92] and several other researchers investigated an alternative
approach to inverse filtering of the speech waveform to generate the excitation signal.

There findings show that this approach is capable of giving a good estimate of the glottal
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volume velocity. In the following parts, we will describe two representative parametric

models developed by Rosenberg [91] and Titze [126], respectively.

5.1.1 Rosenberg’s Model

In 1971, Rosenberg applied a pitch-synchronous re-synthesis method to produce speech
utterances with various source waveforms [91]. In his perceptual tests, the most natural
excitation signal involves specification of several parameters. In order to better explain
Rosenberg’s model, we need to first introduce the general waveform of the glottal area

during the vocal fold excitation as shown in Fig. 5.1

A

Glottal Area

| .
~<—— TP . . TN — T

Figure 5.1 General waveform of the glottal area during excitation.

As shown in Fig. 5.1, T denotes the pitch period, Tp denotes the opening time during
the glottal excitation and Ty denotes the closing time during the glottal excitation,
respectively. In Rosenberg’s model, the glottal waveform is specified by four parameters,

namely, amplitude factor «, pitch period T', open guotient Iﬂ%‘fﬂ which denotes the ratio
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of pulse duration to pitch period, and speed quotient %{;— which denotes the ratio of the

rising to falling pulse durations. The glottal area function A4(t) is given by:

af3(z)? - 2(£)°] 0<t<Tp
Ag(t) = ol - (552)]  Te<t<Tp+Tn (5.1)
0 Tep+Tn <t

Rosenberg Glottal Waveform (Tp = 0.337, Tn=0.1T)

Time (msec)
Figure 5.2 Glottal waveform computed from Rosenberg’s model .
Fig. 5.2 shows a glottal waveform computed from Rosenberg’s model, where the

parameters are set as: o = 1.0, T = 10ms, Tp = 0.33T and Ty = 0.17, respectively.

5.1.2 Titze’s Model

In 1982, Titze proposed a parametric model to represent the glottal area [126]. The
glottal waveform in Titze’s model is essentially similar to the Rosenberg pulse described
in Eq. (5.1), with an extra parameter § to determine the residual decay of the falling

slope. The glottal area function in this model is given by:
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al(L-)~Omeotdm (_sind VI8 g <
Ag(t) = () Gha )l 0= (5.2)
0 @

A wt VAN T :
where 0 C 707 and On g 5y, respectively.

Titze's Glottal Area Model ((Tp+Tn)/T=0.66, Tp/Tn=2.4, §=1.2)

Time (msec)

Figure 5.3 Glottal waveform computed from Titze’s model.

Fig. 5.3 shows a glottal waveform computed from Titze’s model, where the parameters

areset as: o = 1.0, T = 10ms, Tp = 2.4Tx, (Tp+Ty) = 0.66T, and § = 1.2, respectively.

5.2 Mechanical Model

Over the years, several researchers have developed a number of different methods for
the realistic modeling of the vocal fold excitation during speech production. In 1972,
Ishizaka and Flanagan [54] developed a two-mass model of the vocal fold by chosing the

parameters from mechanical considerations and including aerodynamics with estimations

of glottal waves produced in normal phonation. Other researchers have proposed similar
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vocal fold models which differ from each other by the parameters and the way of aerody-
namic influences [61], [115]. Recently, researchers have introduced finite-element method
(FEM) to model the detailed geometric and material information in vocal fold [6], [7]. In
this thesis, we focus on the lumped parameter model of the vocal fold and its application

to articulatory synthesis and the experimental evidence of source-tract interaction.

5.2.1 Two-Mass Model

Fig. 5.4 shows that the two-mass model describes one vocal fold by two coupled
oscillators, where P;, A, and U, denote the sub-glottal pressure, glottal area, and glottal
volume velocity, respectively. Each oscillator consists of a mass, a spring stiffness, and a
damper. Mass my, linear spring stiffness k;, and damper r; represent the lower part of the
vocal fold with thickness d;. Mass ma, linear spring stiffness k;, and dumper ry represent
the upper part with thickness dy. The two masses are coupled by a spring stiffness ..
The two masses, m; and me are permitted to move in a lateral direction. The deflections
of m; and mq are z; and o, respectively. In the two-mass model, symmetry along the
length of the glottis is assumed, therefore only one vocal fold is considered. When the
vocal fold approaches the symmetry line within a very short distance, collision springs
will be activated and have an influence on m; and ms, respectively, in the contralateral
direction.

The dynamic response of the mechanical part of the two-mass model can be described

by the equations of motion of the two masses as follows.

miZy + rd + (lﬁl + kc)iL'l — koo = F (53)

Moly + ToZe + (ko + ke)zo — ko1 = F (5.4)
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where F; and F} are the aerodynamic forces exerted on the masses. & and Z denotes the
first and second derivatives of the variable z, respectively. In our system, an improved
two-mass model proposed by Don Davis and Scott Slimon in Electronic Boat corporation

is used. The improved equations of motion are given as follows.

Mty + ity + s1(x1) + ke(z1 — 22) = FA (5.5)

Moy + Toka + 82(Ta) + ke(zo — 1) = Fa (5.6)
Fa(os + ) + hal(my + 42) + e+ 52V, @ < -2

81(271) = { A g (57)
ki(z1 + mr1zd), z > —“ﬁ's'l‘
koo +nkzx2)+hz[(xz+—f’°—z)+77h2(xz+—ﬂ-°—2—) L 2 < —%%2

so(x) = ) (5.8)
(@2 + 1423), T2 > — ¢

\

where Ag1 and Agp denote the area through mass 1 and mass 2 at the phonation
neutral position, [, denotes the depth of glottis slit, & and ks denote the open linear
spring constant of mass 1 and mass 2, h; and hy denote the closed linear spring constant
of mass 1 and mass 2, 71 and 7y, denote the open non-linear spring constant of mass 1
and mass 2, Ny and 7y denote the closed non-linear spring constant of mass 1 and mass
2.

The vocal fold model is coupled with the aerodynamic equations by relating the

aerodynamic forces Fy and Fj to the glottal volume velocity U, in the following way.

P,— Py _1372( ) 24 / v (x)d:cﬂ (5.9)
Py — Py =127 ﬁdl U, + Zi dgg (5.10)

Py — Py = ng(A "Aig{ (5.11)

Py — Py = Moty P8 dUs (5.12)

T A%, 0T A dt



U, 5 Ag2

Py — P, = .
92 — Py = 2<Ag2) A (1- 4, ) (5.13)
1
= §(P11 + Plg)lgdl (514)
1
F = §(P21 + Pao)lyds (5.15)

where A.(z) denotes the contraction area at z, A; denotes the area after expansion, A,
and Ago denotes the area through mass 1 and mass 2, respectively.

The numerical solution of the vocal fold excitation signals are computed in the folliwng
iterative way. In the n'® iteration, the volume velocity computed from the previous
iteration U, (n=1) is used to compute the aerodynamic forces F(") and Fz(n) using Egs. (5.9)
- (5.15). Then the computed forces F\™ and FL™ in the n* iteration are subtituted into

™ and z{. From z{™ and z{¥,

Egs. (5.5) - (5.8) to compute the mass displacements
we further compute the areas A 7{ and Agg . Finally, the glottal area in the n** iteration
is determined by Aé mzn{Ag1 ) _,(JZ)}. This glottal area is used to compute the volume

velocity in next iteration, which is being used as one of the boundary conditions of the

governing equations (Navier-Stokes equations) of fluid flow in next iteration.

5.2.2 M-Mass Model

In the current synthesis system, the two-mass vocal fold model described in previous
section is used to compute the glottal excitation signals for articulatory speech synthesis.
However, an M-mass model is needed to simulate the velocity field and vorticity field of
the vocal apparatus because a two-mass model is insufficient to describe the flow inside
vocal fold in this case. Furthermore, an M-mass model has the potential to comute more
accurate glottal excitation siganls for articulatory speech synthesis.

Similarly, we can get the equations of motion of the M-mass model as following:
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mydy + ridy + kix + Kio(z — 22) = Fi
M + Tk + ki 4 ki1 (T = Tim1) ki (T — Tig) = F, =2, M~ 1

mudnr + Tartar + kvt + Kyrpr-1(@m — t—) = Fyr (5.16)

where k; denotes the spring stiffness of mass m;, r; denotes the damping coeflicient of mass
m;, k;; denotes the coupling spring stiffness between mass m; and mass m;. Alternatively,

we can write the equations of motion of the M-mass model in a matrix form as follows:

MipossZ+ RE+KZ=F (5.17)

where Myuss, R and K denotes the mass matrix, the damping matrix and the stiffness

matrix K, respectively. In a two-mass model, these matrices are given by Mpess =

my O . ry 0 ki + ko —k
' , R = ' , K = ' = 2 . However, if we want to

0 me 0 T9 _k12 kz + k?lg
consider the non-linear effects of mass spring and both the open spring constant and

closed spring constant like the improved two-mass model described in previous section,
the simple matrix form in Eq. (5.17) can not be used and terms k;z;, 4= 1,---,M in

Eq. (5.16) should be accordingly replaced by s;(z;). The s;(z;) is given by:

Ago; Agoi Agos
(2 ki(zi + iy ) + hal(@i + )+ Mhi (s + _291%)3]’ %S, (5.18)
i\Li) = .
ki + M), Ti > —%%

where Ago; denotes the area through mass 4 at the phonation neutral position, k; denotes
the open linear spring constant of mass 4, h; denotes the closed linear spring constant of
mass 4, Mi; denotea the open non-linear spring constant of mass i, 7; denotes the closed

non-linear spring constant of mass ¢, fori =1,---, M.
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5.3 Experimental Results

In this parts, we present the simulation results on vocal excitation based on the M-
mass model described above. Our experimental results include the glottal area Ay, glottal
particle velocity V;, and glottal volume velocity U, of an English sentence “Where were
you while we were away”. The glottal particle velocity V, and glottal volume velocity
U, will be used as initial conditions for the Navier-Stokes (N-5) equations for articula-
tory synthesis which will be discussed in the later chapter. The different experimental

conditions are listed in Table 5.1.

Table 5.1 Different experimental conditions for the simulation of glottal excitation.

| Filename ” VTLN | Time-varying pitch ] Duration of sentence
runjj Yes (factor = 1.4) No 2.4 sec
runkk No No 2.4 sec
runll No Yes 2.4 sec
runmm No Yes 1.2 sec

In Table 5.1, VTLN denotes vocal tract length normalization. The reason of using
VTLN is to compensate the unrealistic vocal tract length (gr.eater than 23 cm in most
cases) computed from Coker’s model. In the case of time-invarying pitch, a single pitch
(Fy = 100 Hz is used throughout the simulation. In the case of time-varying pitch, the
pitch contour of a waveform of the sentence “Where were you while we were away” from
the TIMIT database is extracted using the ESPS/Xwaves+ tool and applied to the glottal
excitation simulation. The duration of the original sentence from TIMIT database is 1.2
sec. In our experiments, we found out that the speaking rate of this sentence is too fast
to synthesize natural sounding speech signal so that we artificially double the synthesis
length in order to compensate the flaw from the database. We have also segmented the

phonetic boundaries of several recorded normal speaking rate utterances and will use this
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prosodic information to re-synthesize continuous speech sentences later. The waveforms
of the simulated glottal area Ay, glottal particle velocity V, and glottal volume velocity
U, are shown in Figs. 5.5 - 5.8, Figs. 5.9 - 5.12 and Figs. 5.13 - 5.16, respectively. In

Figs. 5.5 - 5.16, one time step corresponds to 105 second.

file runjj.72 (with constant pitch and vocal tract nomalization)
0.08 ! ! ! ! T ! T ! !

0.025F-- -+ ........ ;
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Time step

Figure 5.5 Simulated glottal area under the experimental condition runjj.

5.4 Discussion

From Figs. 5.5 - 5.16, we can see that the M-mass model of the vocal folds is able to
generate more realistic results of glottal area and glottal volume velocity. This method
is better than the parametric models described in Section 5.1 because we can clearly
observe ripples especially in the positive glottal opening interval of the simulated U,
waveforms, which is a strong evidence of the source-tract interaction. Another evidence
of source-tract interaction is the observation of the skewing effect of the glottal waveform

due to the existence of vocal tract constriction. Our results are similar to those reported
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file runkk.72 (with constant pitch)
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Figure 5.6 Simulated glottal area under the experimental condition runkk.

flle runil.72 (with fime-varying pitch)
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Figure 5.7 Simulated glottal area under the experimental condition runll.
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file runmm. 72 {with constant pitch, duration = 1.12 5}
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Figure 5.8 Simulated glottal area under the experimental condition runmm.

fite runj.72 (with constant pitch and vocal tract normalization)
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Figure 5.9 Simulated glottal particle velocity under the experimental condition runjj.
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file runkk.72 {with constant pitch}
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Figure 5.10 Simulated glottal particle velocity under the experimental condition runjkk.

file runll.72 (with time-varying pitch)
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Figure 5.11 Simulated glottal particle velocity under the experimental condition runll.
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file runkk.72 (with constant pitch)
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Figure 5.12 Simulated glottal particle velocity under the experimental condition run-
jmm.

% 1078 file runjj.72 (with constant pitch and vocal tract normalization)
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Figure 5.13 Simulated glottal volume velocity under the experimental condition runjj.
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x107° file runkk.72 (with constant pitch)
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Figure 5.14 Simulated glottal volume velocity under the experimental condition runkk.
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Figure 5.15 Simulated glottal volume velocity under the experimental condition runll.
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Figure 5.16 Simulated glottal volume velocity under the experimental condition runmm.

by Fant et al. [28], [29], [30]. However, our experimental results also simulate the
glottal particle velocity which is not done in Fant’s work. Furthermore, multiples ripples
can be observed in our simulation results of glottal particle velocity and glottal volume
velocity. Our assumption is that the source-tract interaction is due the influences of both
the first and the second formants, although some Fourier analysis need to be done to
verify this assumption. The source-tract separability is unsuitable during the production
of unvoiced sounds due to the additional excitation source required at the vocal tract
constriction. Even during the production of voiced sounds this assumption only holds as
a first order approximation since the glottal excitation signal depends on the transglottal
pressure which, in turn, is controlled by the subglottal pressure and the vocal tract
shape. A more realistic model of the vocal fold excitation which considers the non-linear
effects due to source-tract interaction is not only important for speech synthesis, but also

beneficial for low-bit rate perceptual speech coding.
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CHAPTER 6

ANALYSIS OF THE VELOCITY AND

VORTICITY FIELDS

6.1 Simulation Results

Simulation results of the velocity and vorticity fields of speech production. The disk

space problem is still not solved...

6.2 Analysis

Analysis of the simulation results.

6.3 Relation to Speech Production Model

Can we use this analysis result to verify (part) of Krane’s speech production model?

But we need to synthesize both voiced and unvoiced sounds in this case.
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CHAPTER 7

SPEECH SYNTHESIS AND ANALYSIS RESULTS

7.1 Brief Overview of Fluid Dynamics

From the prospect of fluid dynamics, the continuum hypothesis asserts that fluids
exist and can be measured as a collection of infinitesimally small particles characterized
by mechanically based continuous variables such as particle velocity ¥, pressure P, density
p, et al. The Fulerian description of particles uses a frame which is fixed in space for all
time. The Fulerian velocity at a fixed point Z and time ¢ is the instantaneous velocity of
the particle passing that point, 7 = #(Z,t). Consider a material control volume (MCV) at
two times, t and t + dt, enclosing some material, where « is the density of some quantity

A per unit volume. The total amount of A in the MCV at any given time ¢ is given by:

A= /V o oDV (7.1)

Reynold’s transport theorem is one of the basic principles for all kinds of fluid dynam-
ics. It describes the conservation for the total amount of A within the MCV and can be

stated as following. The total rate of change of A = The instantaneous rate of change
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of A within V + the flux of A through the boundary of S [17]. This statement can be

written in the following mathematical form:

D Oa
— dV = —dV 0) -7 .2
Dt V(t)a vt Ot + S(t)<am) nds (7:2)

where 7 - 7 is the velocity normal to the surface of S(¢) and (a®) - ©idS is the rate of
volume changes across dS. Note that the operation % is called the material derivative
and is different from the conventional derivative defined in Calculus. For example, if o
is a scalar, then its material derivative is given by:

%:%;aw (73)
Another fundamental theorem in fluid dynamics is the divergence theorem. It relates

surface and volume integrals for suitably differentiable densities a, velocity field ¥ and

bounding surface normals 7. The divergence theorem can be written as following [17]:

/ ob-7dS = [ V- (aB)dV (7.4)
St V(t) _

Combining Eq. (7.2) and (7.4) we can get another form of Reynold’s transportation
theorem:

DA _ (o

Di = N ‘é—t‘ +V- (OéU)dV (75)

Consider a special case where the quantity A denotes the fluid mass and the density
o denotes the mass density of the fluid accordingly, we can get the following equation of

the conservation of mass:

== (% 4V - (o0)dv (7.6)
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Another conservation law in fluid dynamics is the conservation of momentum. It
states that the time rate of change of the momentum of the MCV = the sum of all the
external forces acting on the MCV. This momentum equation is written in the following

tensor form:

(7.7)

where v; denote the three components of velocity, o;; denote the six components of stress
tensor, p denotes the density of the medium and f; denotes the extrinsic applied force.
When we look at Eq. (7.6) and Eq. (7.7), we can find that wave equation based on linear
acoustics omits the second term Uj'a% in Eq. (7.6) and the second term p%’gi and the
fourth term Q‘ﬁ— in Eq. (7.7). The terms v; 2% a p%ﬂ and -a—oﬂ denote the convection of
mass, convection of momentum and viscous force, respectively. This means that speech
synthesis based on the fluid dynamic principles consider the convective mode and the
viscous effects which are ignored in the conventional speech synthesis based on linear
acoustics.

In this section, we briefly introduce the definition of several fluid dynamics notations
which are directly related to our speech processing work. A pathline is a trajectory of
a fluid particle, with a fixed particle name £, i.e. & = Z({,t). A streamline is a line in
space that is everywhere tangent to the Eulerian velocity field 7(Z,t) at a given instant
t. Vorticity is defined as the curl of the velocity field, i.e., & = V x 9. A vortez line is
a space curve that is everywhere tangent to the vorticity. The circulation about a given

closed circuit C in a fluid is defined by the line integral:
= [ fds= [(Vx)- S 78
U tds S( X ) -7t (7.8)

where t is the tangent vector along the path C within the fluid and ds is the arclength

along the path. The second equality comes from Stoke’s theorem.
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A perfectly viscous fluid is defined as a material which deforms irreversibly at a
constant rate under the action of an applied shear force of constant magnitude. A
Newtonian fluid is a perfectly viscous fluid in which the rate of deformation varies linearly
with the magnitude of the local stress. Some properties of a Newtonian fluid and its
constitutive relations are: (1). In the absence of shear forces there is no deformation of
the fluid particles; (2) The stress tensor o;; is proportional to the rate of strain tensor
E;;. An incompressible fluid is the fluid with %g =0 or V-7 =0. An irrotational flow is
the flow which satisfies V x ¥ = 0. The velocity of an irrotational flow can be represented
as the gradient of a scalar potential @, i.e., ¥ = V®. An unsteady flow is the flow with
non-zero time derivative of the potential @, i.e., %fi # 0. An ideal fluid is defined as an
inviscid (u = 0, XA = 0) and incompressible fluid. A potential flow is an ideal flow which
is also irrotational. A stagnation point is the point in the velocity field where ¥ = 0.
Boundary layer is the thin fluid layer adjacent to the surface of a body in which strong

viscous effects exist.

7.2 Governing Equations

During the production of speech, both the irrotational and incompressible flow modes
exist. In the irrotational flow, motion of air particles is characterized by the propagative
transfer of energy and momentum. A fluid particle experience no net displacement from
its initial position during the passa,géof a sound wave. The only forces active in a
sound field are pressure forces, which act on the centroid of a fluid particle, producing
no rotation upon it. The incompressible flow is by contrast characterized by transfer
of energy and momentum through the actual displacement and rotation of air particles,

which as a result end up far away from their initial location. At air speeds observed
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in speech, which might approach 40m/s (Mach number = 0.12), these motions proceed
without appreciable volume fluctuations.

The conservation laws of mass and momentum described in the previous section are
Reynolds-averaged to get the Reynolds-Averaged Navier-Stokes (RANS) equations which
are the governing equations describing both the irrotational and slightly compressible

fluid motions during sound generation. The RANS equations can be written as the

following tensor notation.

Op O
2—-— ——is
MPo+ 5 =0 (7.9)

dv; N Quw;  Op | 0 {(u—{-yt) 5%}

o " s, oz, 0z;| Re 0z (7.10)

where Eq. (7.9) is called the continuity equation, M denotes the Mach number and M =
%, v; denote the mean velocity components, p denotes the static pressure,
v denotes the kinematic viscosity, v; denotes the turbulent eddy viscosity coefficient
and Re denotes the Reynold number. In RANS equations, the flow is assumed to be
slightly compressible and an isentropic assumption is used to relate pressure and density.
These equations are applicable to time-dependent, low Mach number flows, such as those
existing in the human vocal tract. Furthermore, a turbulence model is also used to
simulate the turbulence effect in speech generation. Currently, we use an eddy viscosity
mixing length model for articulatory synthesis. In this model, the eddy viscosity is
expressed as a functionof local flow variables (velocity derivatives and wall distances)
and a user-specified mixing length. Damping functions are included in the model for
smooth transition of the eddy viscosity from its value in the log layer to the wall.

Until now, there is no closed-form solution to RANS equations which are highly non-

linear partial derivative equations (PDE). In our work, a RANS-based software package

developed at Electric Boat Corporation is used. This package is a multi-block, finite
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difference based solver which is second order accurate in both space and time. This
software package is run on a Origin 2000 supercomputer in the NCSA center of the
University of Illinois. The key features of the RANS-based software package provided by

Don Davis and Scott Slimon at Electric Boat Corporation can be summarized as follows.

1. It uses finite difference approximation , i.e., central difference.

It uses alternate direction implicit (ADI) solver.

It uses body-fitted coordinates.

It uses second and fourth order articicial dissipation to control oscillations.

It uses time-dependent metrices for moving grid problems.

S o A W e

The inlet boundary conditions are extrapolated pressure and specified
axial particle velocities over a specified area. The velocities and area are
determined from a multi-mass vocal fold model (M = 2 in our current

synthesis results).

In our current system, a single grid system is used for RANS simulations. The
resolution of this grid is designed such that it will capture both viscous and inviscous

phenomena of sound generation.

7.3 Synthesized waveform

In this section, we present some experimental results of our articulatory speech syn-
thesis system. The simulation time step of the RANS-solver is 10{—5) second. The vocal
fold model described in Chapter 5 is coupled with the RANS-solver and they are itera-
tively solved at the same time step. First, we present the synthesized speech waveform of
a dipthong /AY/ (“uy” in buy). Forty vocal tract shapes were estimated using the dy-

namic parameter estimation method described in Chapter 3. The time step between each
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consecutive vocal tract shapes is 10 msec. Moving grid , i.e., dynamic metrics terms
were added to the RANS solver to accurately account for the actual movement. The
boundary condition at the vocal tract inlet is specified by the particle velocity computed
from the vocal fold excitation model. Fig. 7.1 shows the waveform of the synthesized
dipthong /AY/.

Sythesized speech waveform /AH/-/EE/ (file runn)
500 ] T T I T T

_400_, .............. ............. .............. ..............

-500 .
0 50 100 150 200 250 300 350

Time (msec)

Figure 7.1 Waveform of the synthesized dipthong /AY/ (“uy” in buy).

In the next step, we synthesize the speech waveforms of an English sentence “Where
were you while we were away”. The prosodic information (pitch contour, duration and
energy) were extracted from a sentence in TIMIT database. Different simulation con-

ditions were listed in Table 5.1. Figs. 7.2 - 7.5 show the waveforms of the synthesized
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speech sentence under the experimental conditions of runjj, runkk, runll and runmm,

respectively.

Waveform of the synthesized speech without energy normalization (file runif)

seconds

Figure 7.2 Waveform of the synthesized sentence “Where were you while you were away”
under the experimental condition of runjj.

7.4 Speech Analysis Results

7.4.1 LPC Spectrum and the Short-Time Power Spectrum

In this section, LPC spectrum and the short-time power spectrum of the synthesized
speech signal are computed. A preemphasis filter with the parameter o = 0.97 is used
to equalize the inherent spectral tilt in speech. A Hamming window with the length
24 msec is applied for preprocessing. The order of the LPC analysis is 12. The short-
time power spectrum is computed through FFT technique. Fig. 7.6 shows the spectra
of the second frame of the synthesized dipthong /AY/ (uy in buy, which corresponds

to the spectra of vowel /AH/ (u in but). The upper figure denotes the LPC spectrum
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Wavaform of the synthesized speech without energy normalization (file runkk)
2500 T T T T
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Figure 7.3 Waveform of the synthesized sentence “Where were you while you were away »
under the experimental condition of runkk.

Waveform of the synthesized speech without energy normalization (file runli)
2500 T T T

seconds

Figure 7.4 Waveform of the synthesized sentence “Where were you while you were away”
under the experimental condition of runll.
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Waveform of the synthesized speech without energy normalization (file runmm)
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Figure 7.5 Waveform of the synthesized sentence “Where were you while you were away’
under the experimental condition of runmm.

and the lower figure denotes the short-time power spectrum, respectively. The sampling

frequency is 10 KHz.

7.4.2 Spectrogram

In this section, we present the spectrograms of the synthesized sentences “Where were
you while we were away”. The same preemphasis and Hamming windowing approach as
described in the previous section are applied. The window length is 25.6 msec and an
50% overlapping is applied before the time-frequency analysis. Figs. 7.7 - 7.10 show the
spectrogram of the synthesized sentences under the simulation conditions of runjj, runkk,
runll and runmm, respectively. The spectrogram of the original speech is shown in Fig.

7.11 for comparison.
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Figure 7.6 LPC spectrum and short-time power spectrum of the synthesized dipthong
JAY/ (“uy” in buy).
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Figure 7.7 Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runjj.
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Figure 7.8 Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runkk.
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Figure 7.9 Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runll
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Figure 7.10 Spectrogram of the synthesized sentence “Where were you while you were
away” under the experimental condition of runmm.
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Figure 7.11 Spectrogram of the recorded sentence “Where were you while you were
away”.

7.5 Discussion

In this chapter, we show the waveforms and the spectra analysis of the synthesized
phonemes and continuous sentences using the articulatory synthesizer discussed in the
previous chapters. Informal listening test shows that our articulatory synthesizer can
generate good quality speech sounds. The synthesized speech signals with pitch con-
tour information sounds more natural than the synthesized signals with monotone. In
spectrogram analysis, we can see that when the pitch-contour information is included, a
significant improvement can be seen from Fig. 7.9. We can also see that the articulatory
synthesis has more flexibility than the conventional speech synthesis approaches. For ex-
ample, our experimental results show that it’s much more convenient for an articulatory
synthesizer to adjust some physical parameters to achieve personalized speech synthesis.

In our experiments, the synthesized speech under the conditions runll and runmm sound
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muffled because in those cases vocal tract lengths (approximately 23 cm) simulating

that of a very big male are used.
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CHAPTER 8

CONCLUSION AND FUTURE WORK

In this thesis, a complete framework of an articulatory speech synthesizer and its
relation to speech production are presented. An LS signal approximation technique was
proposed to solve the motor control problem in speech production. This approach was
proven to have lower error bounds than the interpolation-based methods and was suc-
cessfully applied to estimate the moving vocal tract shape in articulatory synthesis. A
vocal fold model based on fundamentals of mechanics and aeroacoustics was used to
compute the excitation signal of vocal tract. Strong evidence of source-tract interaction
was also found in the simulation results. Finally, an articulatory synthesis system was
implemented to synthesize natural-sounding continuous sentences. Our finding is that
articulatory synthesis has the potential to synthesize human-like speech sounds and has
more flexibility than the conventional approaches. For example, articulatory synthesis
uses interpolation methods naturally related to articulator movement planning to cope
with the coarticulation and unit concatenation problem. The vocal fold excitation is
naturally computed from a mechanical model and the aeroacoustics. On the other hand,
smoothing between the unit boundaries is still a major problem in concatenative syn-

thesis and an accurate model to represent the excitation signal is still not completely
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found in formant synthesis. Furthermore, articulatory synthesizer is able to conveniently
synthesize personalized speech sounds.

During the last decades, speech signal processing has experienced significant improve-
ments along with the progress in the areas of digital signal processing, applied statistics,
VLSI design, pattern recognition, artificial intelligence et al. However, the speech and
language problem is far away from being completely solved. In [82], Rabiner and Levin-
son proposed an alternative view of the speech production/speech perception process.
From their view, the discrete symbol information rate in the raw message text is about
50 bits per second (bps), the information rate after the language code conversation and
inclusion of prosody is about 200 bps, the information rate at the neuromuscular level is
about 2000 bps and finally the information rate of the acoustic signal is between 30,000
~ 50,000 bps. On the other hand, we can clearly see that the current speech recognition,
synthesis and coding techniques use much more information rate to process the speech
signal while their performances are still much worse than those of the human being. Ar-
ticulatory speech production model has the potential to lead to a more compact model
of the speech signal and thus be beneficial to speech signal processing. Although limited
research has been conducted in this area compared to other speech processing techniques,
we can cautiously claim that investigation of speech production based on first physical
principles and with the help from cross-discipline research including signal processing,
statistics, fluid dynamics, aeroacoustics and aerodynamics might help us to solve some
bottleneck problems encountered in the current speech signal processing.

Although articulatory synthesis and speech production modeling has the potential
to benefit a wide range of problems in speech signal processing, we realize that a lot of
research need to be investigated in this technique due to its unsolved problems, computa-
tional complexity and even performance. Future work in this thesis include the synthesis

of higher quality sounds and the simulation and analysis of velocity and vorticity fields
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(Chapter 7). Furthermore, it’s found that vocal tract shape is the dominant factor in
determining the spectral content of the turbulent jets in speech production [62]. If time
permits, we will also investigate the construction of an articulatory model based on
MRI data which will give us better detailed information about the vocal tract geometry.
Moreover, a lot of important problems need to be solved after this thesis work. Some

interesting topics are listed as following.

1 . Investigation of the effects of non-symmetric, moving, compliant walls of
the vocal tract on speech generation.

2 . A much more simplified but still effective computational model which
considers both the convective and the propagative modes during speech
production.

3 . Inclusion of the nasal tract in an articulatory model.

4 . Investigation of relations between different speaking styles such as stress,
accent and the articulatory parameters and its application to personalized
speech synthesis.

5 . Investigation of the solution of the RANS equations when there is a closure
of vocal tract.

6 . Investigation of the solution of the RANS equations when there is a closure
of vocal cord.

7 . Inclusion of the shear force due to fluid dynamics.
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