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ABSTRACT

The last decade has seen the revival of sonic boom research. a topic which thrived
for about 10 years starting in the late 1960s. This revival is a direct result of the
extensive projected market for a new breed of supersonic passenger aircraft. its design.
and its operation. One area of the research involves sonic boom noise penetration into
the ocean: the last decade seen a heightened awareness of noise effects on marine life, one
concern being the possible disturbance of marine mammals from the noise generated by
the proposed high speed civil transport (HSCT) flyovers. Although theory is available
to predict underwater noise due to a sonic boom impinging upon a homogeneous ocean
with a flat surface. theory for a realistic ocean. one with a wavy surface and bubbles
near the surface. is missing and will be developed in this work. First. several metrics are
applied to describe the underwater sonic boom noise. Then a computational method
is developed which calculates the underwater pressure and intensity fields: the method
is verified with proven theories. higher-order formulations. and recent applications.
Using proposed parameters for an HSCT together with each realistic ocean feature.
predictions are made for the underwater sound field. The curvature of a wavy ocean
surface is shown to focus/defocus the incoming waveform. and the resulting underwater
evanescent wave is slightly increased /decreased in pressure amplitude. It is also found
that bubbles near the surface of the ocean only negligibly affect the incoming sonic
boom and its associated underwater noise. Overall. it is determined that the realistic
ocean features affect the penetrating sonic boom noise by modifying the underwater

sound levels only one decibel or less.
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Give us this day a stable code.
Let it print numbers that don’t explode,
Let it solve problems that no one has done

Since computations have first begun.

— Sound Numbers for Computing Sound. by L.B. Felsen.
appears in Computational Acoustics. Algorithms and
Applications (1986)
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Chapter 1.
Introduction

1.1. Motivation

It is well known that sonic booms are produced from aircraft traveling faster than the
speed of sound. Noise associated with these high-pressure disturbances is a concern when a
supersonic airplane flies over inhabited areas: thus supersonic flight has been restricted to
over water or desert areas. Even though humans may not reside in these locations. other
animals do.

The 1990s have seen a heightened interest in the impact of noise on marine mammals.
One example is research being conducted on marine mammal behavioral response to sonic
booms: this research is in response to United States policies detailed in the Marine Mam-
mals Protection Act and the Endangered Species Act."! Concern lies in these behavioral
responses rather than physiological harm."! Marine mammals include several different an-
imals. some living in the water. some on land. but all spend time near the surface of the
ocean: thus. each has the potential to hear noise created by supersonic aircraft.

The study of sonic boom noise penetrating an air-water interface is not new to the
scientific community. In the 1960s and early 1970s. research on supersonic transport (SST)
was in full force: incorporated in this research were several studies focusing on the sonic
booms created by SSTs and their corresponding underwater sound. Unfortunately, Congress
canceled the U.S. SST program in 1971.7! leaving the development of a new U.S. supersonic
airplane unrealized and studies of sonic boom noise penetration into the ocean incomplete.

In 1989 interest in an SST program was revived: the projected world aviation market
showed an increase in the need for overwater flights.”! an example being Los Angeles to
Tokyo. The potential market is between 500 and 1000 new aircraft, a number associated
with a profitable venture. As a comparison, there are only about 13 aircraft in the Concorde
fleet. Also, the Concorde is approximately 204 ft (62.1 m) in length, holds 100 passengers,

flies at a cruising speed of Mach 2 and a cruising altitude between 55,000 and 60.000 ft
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(16.765 and 18.238 m), and has a flying range of approximately 3250 nautical miles (n. mi)
(3740 mi. 6019 km). The Concorde has not been very economical for the airline industry, so
a super Concorde (twice as many passengers) is in development by the English and French.
The U.S.-proposed high speed civil transport (HSCT) would be 311 ft (94.8 m) in length 5%
hold 300 passengers.”™ " fly at a cruising speed "7 of Mach 2.4 and a cruising altitude of
60.000 ft (18.288 m).*""! and have a range of 5500 n. mi (6329 mi, 10.186 km). This new

breed of supersonic passenger aircraft is expected to reach operational status between the

vears 2005 and 2010.

1.2. Goal of Research

The overall goal of this dissertation is to determine the underwater sound levels due
to sonic booms generated by the new HSCT. It would be possible using existing theories
to make such calculations for a homogeneous ocean with a flat surface. What is not vet
available are theories which include realistic ocean features: waves on the ocean surface and
bubbles beneath the surface (an inhomogeneous ocean).

The addition of realistic ocean features to the study of sonic boom noise penetrating
from air into the ocean can be accomplished by formulating a computational method. Using
such a method. each ocean feature can be treated separately to find its individual effects on
the incoming waveform. A wavy ocean surface can be studied to see if its curvature focuses
or defocuses the incoming sonic boom noise. possibly causing a change in the underwater
pressure disturbance. An ocean with bubbles near the surface also has the possible effect of
altering the underwater pressure field, but the main concern here is the possible increase in
the amount of sound transmitted through the air-water interface. A computational method
can also incorporate the parameters of an aircraft not yet in existence: it is possible to study
sonic booms generated by the proposed HSCT.

Determining underwater sound levels associated with sonic booms hitting the surface of
the most realistic ocean possible allows predictions of the noise that marine mammals will
hear. Marine biologists could use this information to predict the impact from the HSCT-
generated sonic booms on these animals, treating each animal type according to its unique

hearing abilities.
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1.3. Dissertation Overview

The remainder of this dissertation covers relevant concepts. background information.
the development and results of computational simulations. verification of methodology. and
conclusions of the research.

Chapter 2 discusses the concept of sonic booms: how they are formed. information
about realistic waveforms. and the interaction of sonic booms with the surface of the Earth.
Chapter 3 gives the background information for sound penetrating from air into water:
some of the reviewed articles will serve as a comparison to the preliminary computational
studies. The first results are shown in Chapter 4. where marine mammal issues are discussed
and sound levels are explained and calculated to find the appropriate description of the
underwater sound due to a sonic boom impinging on the ocean surface. Chapter 5 introduces
the computational method used for simulating the full sonic boom/ocean interaction by
describing the computational domain parameters and deriving the algorithms used for wave
propagation.

The computational simulations for a rounded sonic boom interacting with the ocean
surface begin in Chapter 6. This chapter looks at the pressure field throughout the com-
putational domain then introduces the calculation of the intensity field. Results are shown
for the case of a homogeneous ocean with a flat surface: relevant studies are used for com-
parison. The second set of simulations is in Chapter 7 and involves the first realistic ocean
feature, waves on the surface of the ocean. This set includes the study of the effects of
both simple and complex curvature of the ocean surface on an impinging sonic boom and
the study of the strength of the curvature effects related to the “wavelengths” of the ocean
waves and sonic boom. The final set of simulations is in Chapter 8 and involves the second
realistic ocean feature. bubbles near the surface. Two different bubble layer models are
implemented in the computer program. and results are presented on the study of how these
bubbles affect the sonic boom penetrating the ocean surface.

Chapter 9 supplies verification of the methodology used throughout the dissertation and
the results obtained applying the computational method. Two different types of validation
are implemented: a higher-order accuracy computational scheme and a more N-shaped sonic

boom as the initial waveform. Finally, conclusions are stated in Chapter 10.
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Chapter 2.
Sonic Booms

Before proceeding with any literature reviews. methodology development, simulations.
or results, it is first necessary to review the basics of the pertinent waveform. a sonic boom.

Sonic booms are phenomena created by aircraft in supersonic flight. They are typically
heard at the ground as a double bang. How they initiate at the aircraft location and
evolve into the noise sonic booms create at the ground will be the topic explained in this
chapter. This explanation is based heavily on a review of sonic booms given by Plotkin
and Sutherland*® and on Chapter 11 of Pierce’s book on acoustics:** many of the figures
are adapted from ones found in these works. Information in this chapter not related to the

stated references is indicated with an alternate citation.

2.1. Initial Disturbance Caused by Aircraft

Aircraft flying faster than the speed of sound generate sonic booms. These high am-
plitude pressure disturbances start to occur when the airplane is in transonic flight (when
the plane makes its transition from subsonic flight—slower than the speed of sound—to
supersonic flight—faster than the speed of sound) and are generated continuously during
supersonic flight. The Mach number (M = v,ircran/C,) is defined as the number by which
one multiplies the speed of sound (c,) in order to calculate the total speed at which an
airplane is flying (vaireran): if it is flying at the speed of sound. it is said to be traveling at
Mach 1 (twice the speed of sound would be Mach 2). A sonic boom is not a result of engine
noise. but rather just of a projectile pushing the surrounding air. The pressure at the front
of the projectile builds up while at the rear it expands out. Figure 2.1 depicts what happens
to the sound waves as a source increases in speed from subsonic to supersonic flight.

As the aircraft travels at supersonic speeds, the high amplitude pressure disturbance
forms a cone with its tip at the nose of the aircraft and its radius increasing in the direction
of the rear of the aircraft. The cone has a thickness with its outer surface associated with
the nose of the airplane and the inner surface associated with the tail of the airplane. This

cone, called the Mach cone. has hyperbolic ground intercepts; these will be explained in
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Figure 2.1: Sound waves in subsonic. transonic. and supersonic flight. M
is the Mach number.

more detail later in this chapter. The Mach cone can be seen in Fig. 2.2. It should be
noted that this is explained in terms of the wave viewpoint not the ray viewpoint. where
the aircraft generates a ray cone. formed from rays extending outward and forward from the
nose of the aircraft. Both viewpoints describe the same phenomena. the ray cone describing
the sound generated at a specific time, and the Mach cone describing the sound existing
at a specific time. Details of the differences can be found in the Plotkin and Sutherland
review.*® The angle 6 shown in Fig. 2.2 is called the Mach angle: this angle sweeps from
the line of the horizontal flight path to the edge of the cone. It can be expressed in terms

of the Mach number as

2.2. Propagation through Atmosphere

Near the supersonic aircraft. the pressure field is directly related to the aerodynamics
of the vehicle and reflects particular geometric details of that specific aircraft; the pressure
disturbance can resemble a rough sinusoid. As this high amplitude pressure disturbance
propagates through the atmosphere, the waveform evolves from a somewhat sinusoidal
transient pulse to an N-shaped waveform. This transformation can be explained using

nonlinear acoustics.
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Figure 2.2: Mach cone formed by aircraft in supersonic flight.

Figure 2.3: A pictorial of waveform steepening. (p is acoustic pressure.
x distance.)

Each part of a waveform travels at a speed dependent on its amplitude: the peak travels
faster than the speed of the zero-crossing part of the waveform, and the trough travels
slower than the zero-crossing. The term for this phenomenon is waveform steepening. This
actually occurs in linear acoustics. but the pressure values are so low that the effects are
insignificant. Please refer to Fig. 2.3 to follow the signature evolution in nonlinear acoustics.
Due to waveform steepening the initial sinusoidal pulse slowly transforms as it propagates.
How much the waveform steepens depends on the parameter of nonlinearity. a function of

the medium.
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Eventually the waveform wants to become multivalued. but this is physically impossible.
This is where one applies the equal area rule, valid based on weak shock theory, where
nonlinearity dominates over absorption effects. A straight line can be drawn which divides
the “triple-valued pressure area™ into two parts of equal area. This line defines where the

shock will be.™ Please refer to Fig. 2.4.

A« -
area

Té .

V shock

Figure 2.4: Shock formation due to waveform steepening. (p is acoustic
pressure, r distance.)

The newly formed shock wave is then in the shape of the letter N. the waveform now
termed an N wave. (The shape is that of an N plotted in time and of a vertically flipped
N plotted in space.) Figure 2.5 is an N wave plotted in space. where P(¢) is the pressure
amplitude of the shock as a function of time and L(¢) is half the length of the N wave. the
length of either the positive or negative part of the waveform. The term effective wave-
length (Apoom = 2L(t)) is used here and later in this dissertation to describe the wavelength
associated with the sonic boom duration. Over time L(¢) increases and P(t) decreases. but
L(t)P(t) = L,P, always: here L, and P, are the initial values (when the waveform first
becomes N shaped). This implies that over time, the sonic boom waveform stretches out.
its amplitude decreasing and its length increasing. Figure 2.6 illustrates this phenomenon.
Although the pressure/length product is conserved, energy in the waveform does decrease
over time. Before the shocks appear. nonlinearities redistribute the energy into harmonics.

After the shocks appear. energy is lost into the shocks.

Theory predicts a perfect N wave. Actual measurements show less than perfect N-

shaped sonic booms. The atmosphere through which a sonic boom propagates determines
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L(t)

Figure 2.5: N wave where P(t) is the pressure amplitude and L(t) is half
the length of the waveform. (p is acoustic pressure. r distance.)

Figure 2.6: N wave stretching over time. (p is acoustic pressure. r dis-
tance.)

its signature. Different scales of atmospheric turbulence affect different parts of the wave-
form:** the smallest scales affect the rise time. larger scales cause spiking and rounding
near the positions of the two shocks. yet larger scales cause uniform magnification and de-
magnification of the waveform as a whole, and yet larger scales cause perceptible shifts in
the direction of propagation by the time the boom reaches the ground. The shock profile at
the ground depends on the entire propagation history.!! Examples of actual sonic booms

will be shown in the next section.
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2.3. Sonic Boom at the Ground

2.3.1. Ground intercept and boom carpet

As was seen in Fig. 2.2, the Mach cone intercepts the ground in a hyperbolic shape. A
blow-up of this hyperbolic intercept is seen in Fig. 2.7. Here a perfect N wave illustrates
the waveform over the entire intercept just to make it clear how the sonic boom waveform
relates to the Mach cone. In reality. the signature extending out from the vertex of the

hyperbola becomes more rounded. the sharp discontinuities fading.*°

pressure

Figure 2.7: Hyperbolic intercept of the Mach cone with the ground.

During supersonic flight. the N wave moves with the aircraft. the Mach cone laying a
carpet on the earth’s surface: this carpet is swept out under the full length of a supersonic
flight, its width depending on the flight and atmospheric conditions.*® Specifically. the
width of the sonic boom carpet is a function of the flight altitude, the speed of the aircraft.
and the characteristics of the atmosphere; it widens with increasing altitude and Mach
number. The primary boom carpet contains the normally observed sonic booms and results
from wave propagation through only the part of the atmosphere below the aircraft. As an
example, an aircraft flying at Mach 2.4 in steady flight would lay a primary boom carpet
of width approximately 30 n. miles when flying at an altitude of 20,000 feet and 50 n. miles

when flying at an altitude of 60.000 feet. (This information is extrapolated from Figure 17 in

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



10

Ref. 40.) A secondary boom carpet may exist which involves the portion of the atmosphere
both above and below the aircraft: the sonic booms can reach the ground after refraction
in the upper atmosphere. The disturbances in the secondary carpet have very low peak
pressure values and are in the subaudible frequency range: they can be heard as rumblings

inside structures.

2.3.2. Sonic boom signatures and frequency content

Examples of actual sonic boom waveforms measured at the ground are shown in Fig. 2.8%3
plotted as pressure versus time. The data were measured from supersonic aircraft flyovers.?
The shapes of the waveforms from left to right are a classic N from an SR-71 aircraft. a
peaked N also from an SR-71 aircraft. and a rounded N from an F-16 aircraft. The peak
pressure amplitudes associated with these waveforms are seen in Table 2.1. For typical
sonic booms. including ones other than those shown here. the peak pressure amplitudes
range from 30 to 300 Pa (sound pressure level: 124-144 dB re 20 pPa, air reference. and
150-170 dB re 1 pPa. water reference). Also. the duration of sonic booms is typically 100
to 300 ms. Supersonic aircraft can create focused or super booms through maneuvers (e.g..
dives, turns. or accelerations): these account for the high end of the peak pressure amplitude

range.

Pmax -+

- {\
- s t
‘ |
Rise time ok Rise time  wk Rise time -» =
< l0ms < 10ms > Sms
< Prun ©- - Prun

N Wave Peaked Rounded

Figure 2.8: Measured sonic boom waveforms: N wave, peaked. rounded:
pressure versus time. Graphics taken from Ref. 23.

The frequency content in a sonic boom waveform can be determined by taking the
Fourier transform of the time-dependent signature. A perfect N wave with a peak pressure

of 100 Pa and a duration of 300 ms has the frequency spectrum shown in Figs. 2.9 and
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Table 2.1: Positive and negative peak pressures of actual sonic booms
shown in Fig. 2.8.

sonic boom pos. peak pressure neg. peak pressure
type (Pa) (Pa)
N wave 52.7 -41.6
peaked 91.0 -61.4
rounded 23.9 -21.6

2.10. (The spectrum figures were generated using Mathematica.™) Figure 2.9 shows the
frequency spectrum calculated using a 16.484-point discrete Fourier transform (DFT): here
it is apparent that important information lies in the region of 0-500 Hz. Figure 2.10 is
a plot of this region. calculations made using a 1028-point DFT: here it is shown that
the significant frequency content of the N wave is at the lower frequencies. Upon further
inspection, an energy analysis (equations can be found in Ref. 55) reveals the following:
approximately 96.8% of the energy is contained in frequencies below 40 Hz. approximately

99.7% below 400 Hz. and only 0.3% above 100 Hz.

180»‘
170

160

sound pressure
spectrum level 150
(dB re 20 uPa/ [Hz]' %) 140

130
120

2000 4000 6000 8000
f (Hz)

Figure 2.9: Frequency content of 100 Pa. 300 ms N wave: 16.384-point

DFT. f is the frequency in hertz.

For a rounded sonic boom with a peak pressure of 100 Pa and a duration of 300 ms
the frequency spectrum is shown in Fig. 2.11. It is safe to say that here that the significant

frequency content is also below 400 Hz. However, comparing Fig. 2.11 to Fig. 2.10, it is
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Figure 2.10: Frequency content of 100 Pa. 300 ms N wave: 1.028-point
DFT. f is the frequency in hertz.

seen that at 100 Hz. for example. the sound pressure level is about 148 dB for the perfect
N wave and only 100 dB for the rounded sonic boom. This is because the perfect N wave is
much more broadband in frequency: the rounded waveform does not contain a substantial

amount of the higher frequency content.

180
160
140
sound pressure 120

spectrum level 100
(dBre 20 uPa/[Hz]')) .

60 MVWWWVWWWW

40

100 200 300 400 500
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Figure 2.11: Frequency content of 100 Pa. 300 ms rounded sonic boom:
1.028-point DFT. f is the frequency in hertz.
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2.3.3. Sonic boom noise

When flying over land. sonic boom effects on structures are a major concern. Sonic
boom damage has included minor occurrences like broken windows (the most common
complaint) and cracked plaster. to more serious rare events like the collapse of a 15th
century church or the triggering of avalanches. Besides these concerns. the perception of
the sonic boom noise. either by humans or other animals. is also an important issue to

address.

As mentioned earlier. a sonic boom can be heard as a double bang: this is possible if
its duration is on the order of 0.1 seconds or longer.*® This amount of time is necessary for
human auditory sensors to detect two distinct sounds. one for the front shock and one for
the tail shock. Although no physical harm (ear drum rupture) will occur to humans until
the peak pressure reaches 330 psf (15.840 Pa). typical sonic booms (0.6-6 psf or 30-300
Pa) tend to be startling and annoying. The noisiness of these waveforms is objectionable
to humans since there is a startle-related reaction due to such large and rapid changes in
noise level in an interval of one second.** When inside their homes, people tend to be more
annoyed by the structure rattling than the boom itself. Sonic booms are thought to be
louder when their duration exceeds 200 ms and more acceptable when the peak pressure is
kept below 1 psf (48 Pa).

How loud or noisy a sonic boom can be has been a topic of intense research.-3*% In
several studies. the primary interest was determining if a shaped sonic boom would be more
acceptable to people. Design configurations for a supersonic aircraft can be optimized to
create a “minimum boom.” It was shown that with this shaped boom, one that has a
longer rise time or flattened peaks. the sonic boom is perceived as decreasing in loudness
and increasing in acceptability. Although it is possible to build such an airplane, it probably

would not be economically viable.

Besides the human response to sonic boom noise. several studies have focused on animal
response. A review of many of these studies and a discussion on wildlife response to noise
is found in Bowles:* most of the following statements are taken from this work. In animals,
the response corresponding to human annoyance is aversion. usually measured by avoidance

responses. Aversive levels of noise might cause wild animals to become irritable, affecting
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feed intake. social interactions. or parenting. An impulsive sound—sonic booms would fall
into this category—causes a startle response which is considered to be aversive. An intense
startle response can include a panic reaction such as flying or running away, temporarily
leaving a nest. Most terrestrial mammals cannot detect low-frequency noise. but some birds.
marine mammals. and fish respond to these sounds. Since the concern that helped motivate
the current research involves marine life. hearing and reactions of marine animals will be

discussed in more detail in Chapter 4.

2.3.4. Sonic booms impinging upon water

A sonic boom from an aircraft in steady. level flight hits the surface of the Earth at an
incident angle (angle from the line normal to the surface) equal to the Mach angle 8. Using
Eq. (2.1) it is possible to calculate the incident angle for a particular Mach number. For
example. a supersonic aircraft traveling at Mach 1.4 would produce a sonic boom with an
incident angle § of 45.6°: for Mach 2.4. 8 = 24.6°: and for Mach 4.4. § = 13.1°. Figure 2.12

depicts the incident angle formed by the sonic boom impinging upon the surface.

incident
wave

surface

Figure 2.12: Incident angle of sonic boom impinging upon the Earth's
surface.

Since a sonic boom often approximates a N-shaped plane wave by the time it reaches

the Earth’s surface. plane wave theory can be applied to determine transmission/reflection

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



15

of the sonic boom at the surface of the ocean. Pierce' applies the concepts of trace velocity,
specific radiation impedance. and trace-velocity matching principle to the example of a plane
wave incident on an interface between two fluids. The trace velocity v, at the interface is
cy/sinf;. where ¢, is the speed of sound in medium 1 and 6, is the incident angle. The
disturbance generated within the second fluid must have the same trace velocity. Snell’s
law is formed from the trace-velocity matching principle:

sin 6, _ sin 6, . (2.2)
(o4] Cy

where ¢ is the speed of sound in medium 2 and §, is the refracted angle. Figure 2.13
illustrates a plane wave traveling in medium 1 and hitting medium 2. The reflected wave
(a propagating wave) in this illustration travels back into medium 1 with the reflection
angle equal to the incident angle: this is governed by the law of mirrors. The transmitted
wave can be either a propagating wave or an evanescent wave, the result determined by the
incident angle.

incident reflected

transmitted

Figure 2.13: Incident. reflected, and transmitted waves going from medium
1 to medium 2. p, and ¢, are the density and speed of sound in medium 1
and p> and c; are the density and speed of sound in medium 2.

Using Eq. (2.2) the critical angle for determining transmission/reflection can be calcu-

lated. If 6; = 90° there would be no transmission of a propagating wave from medium 1 to
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medium 2. Thus the critical angle §.. the incident angle which determines whether or not
a propagating wave can transmit from medium 1 to medium 2. can be expressed as

§. = sin~" (ﬂ) . (2.3)

C2

Using the parameters of ¢; =343 m/s for the speed of sound in air and ¢, =1500 m/s for
the speed of sound in water. the critical angle is calculated to be 13.2°. This incident angle
corresponds to a Mach number of approximately 4.4. What this implies is that. unless the
supersonic aircraft is traveling faster than Mach 4.4. the impinging waveform will be totally
reflected. Recall that the projected HSCT will be flying at a speed of Mach 2.4. a Mach
number associated with total wave reflection.

Even though the incident wave associated with an aircraft flying at Mach 2.4 in level
flight is totally reflected. an evanescent wave penetrates the water's surface. This evanescent
wave decays as a function of depth: it is not a propagating wave nor does it have an
associated propagation angle (angle of refraction). but rather descends in a direction normal
to the surface. One can think of the incident wave pushing on the surface of the water.
creating a local disturbance. Technically it is realized by the boundary conditions at the
air-water interface: continuity of the normal particle velocity and acoustic pressure.

In Pierce’s book* equations are given for calculating the transmission /reflection coef-
ficients for propagating and evanescent waves. He states that the disturbance in medium
2 is equivalent to what would be produced by a traveling flexural wave moving along the
interface. He uses the analysis of sound radiation by a flexural wave moving along a wall to
find the radiation impedance at the interface. Z,. for the two-fluid case. The impedance is
expressed as Z, = p/i.. where p is the complex pressure amplitude and . is the complex
amplitude of the normal particle velocity. the variables that must be continuous across the

interface. Assuming medium 2 is unbounded. the solution for Z, around the interface is

z 'Lc;sc;z if sin 91 < % (9 4)
P 2 if sing, >4 .

where -3 =1 - (Ef)'-’sin") f1. The case applicable for this work is sin, > £, where the
impedance is purely reactive. Also, Z, = g’%. The reflection coefficient is then written

Zy— 2,

Ri,= 221
2T Z+ 2,

(2.5)
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and the transmission coefficient is 7;, = 1 + R;,. The expression for the underwater

evanescent pressure field for an incident plane wave of constant frequency can be written

p- ~ Ti'zcz(...:/cl)(sin 8[)1’6—(.-1,/62)(.32): . (26)

where again p is the complex pressure amplitude. Although the incident wave in this
dissertation is a transient waveform. Eq. (2.6) is important to the understanding of the
underwater pressure field: both 3, and 7., are functions of #, so their values are Mach
number dependent. a point which will be referred to in Chapter 6. It is also apparent in
Eq. (2.6) that the pressure decays with depth. the higher frequencies decaying more rapidly
than the lower frequencies (e~'=/c)(%)2)

The pressure amplitude at the air-water interface is double that of the amplitude in
the air: the impedance change is so large going from air to water that the incident wave
sees a hard reflecting boundary. For an incident wave that is totally reflected. R,, = 1:
this implies that 7}, = 2 or that the pressure amplitude has been doubled. The pressure
doubling at the surface is applied to the penetrating evanescent wave. As an example, if an
incident wave has a peak pressure amplitude of 50 Pa. then its amplitude at the interface
would be 100 Pa: the peak pressure amplitude of the evanescent wave just under the surface
would be 100 Pa which then exponentially decays with depth.

Figure 2.14 shows an airborne wave incident on and reflected from the surface of the
water. Also shown is the underwater evanescent wave. Three chronological times are
represented in order to visualize the progression of the plane wave across the surface of the
water.

The underwater evanescent wave discussed in this section is what will be calculated
in later chapters of this dissertation, the effects of the ocean waves and bubbles on the
evanescent wave being studied. The following chapter will review published research which

encompasses sound penetration from air into water.
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Figure 2.14: Incident. reflected. and evanescent waves along the air-water
interface. Here it is assumed that the incident angle is greater than 13.2°.
Three chronological times are represented.
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Chapter 3.

Sound Penetration from Air into Water:
Background

Starting in the late 1960s. the study of sound in air penetrating into water became a
topic of interest that spanned a decade. The prospect of supersonic aircraft fueled this inter-
est. It led to analytical and experimental research on noise sources in air. some specifically
being sonic booms. The interest in noise penetration into the ocean has since been revived
because the last decade has seen not only the design of a new high speed civil transport
aircraft but also the need to address marine environmental issues.

Many of the articles reviewed in this chapter will be pertinent in developing applications
and making comparisons later in this dissertation. Some of the articles are reviewed solely

to gain a sense of where research stands on underwater noise due to an airborne source.

3.1. Sound Source in Air, Receiver in Water

Although basic research on sound transmission through an air-water interface was ac-
complished as early as 1833.%*! several researchers addressed the issue in the 1970s. A brief
citation of relevant studies follows chronologically. Each author addresses the issue of sound
penetration into water. some dealing with a rough ocean surface.

A study on the transmission of sound from a monopole source through a finite, corru-
gated boundary between fluid media was completed by Macaluso in 1970.3 For this work.
the boundary was a sinusoidal surface. The author developed a mathematical model and
computational procedure to predict the acoustic field in the fluid then succeeded in ac-
quiring experimental data for sound being transmitted from air into water. The theory was
validated by the experiment and was shown to apply to frequencies down to those associated
with acoustic wavelengths equal to the corrugation. or sinusoidal, surface wavelength.

In 1972 Urick® studied the sound emanating from a subsonic aircraft. He showed that
it can be important to take into account all of the paths that sound takes traveling from a

source in air to a receiver in water. He used wave theory rather than ray theory in order

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



20

to include an evanescent wave (also known as a lateral or inhomogeneous wave) as one of
these paths.

In 1973 Medwin. et al.*> studied the spectral characteristics of sound transmission
through a rough sea surface. Applying Helmholtz-Kirchhoff theory to transmission from air
into water they provided useful predictions of the dependence of transmitted sound pressure
level on. among other things. surface roughness. They showed that for low roughness.
transmission is essentially the same as for a smooth surface. but for higher roughness further
studies needed to be done which take into account the evanescent wave.

Lubard and Hurdle® in 1976 conducted an experimental investigation on acoustic trans-
mission from air into a rough ocean. The objective of their experiment was to determine
transmission loss for a source in the air to an underwater hydrophone as a function of, among
other parameters, sea state and incident angle. Data taken with wind speeds ranging from
3-15 knots showed more transmission for these rough ocean surfaces than predicted for a
smooth surface. with the excess increasing with smaller incident angles. The underwater
source strength increased with increasing ocean roughness.

In 1978 Meecham™® looked at point source transmission through a sinusoidal ocean
surface. He was interested in the effects of ocean swell (curvature of the ocean surface) on
the underwater pressure field. Using a high-frequency approximation. he analytically found
that for most cases there was relatively little change in the received sound field as a result
of the sinusoidal surface. However. due to various diffracted components being transmitted
into the water. the underwater sound field could be moderately enhanced.

Although the research mentioned in this section deals with a sound source in the air and
a receiver in the water, it should be noted that many of the authors included propagating
waves penetrating the ocean surface. not just evanescent waves. and at least one focused

only on high frequencies.
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3.2. Sonic Boom in Air, Receiver in Water

Important work was done in the late 1960s and early 1970s on the study of sonic booms
interacting with an air-water interface. Through this research. analytical methods were
developed to characterize the sound field under a flat ocean surface. A few years later,
experiments were performed with a flat water interface. the results validating the analytical
theories. In recent years. research has included not only additional flat surface studies but
has also added some more realistic ocean features when studying the penetration of sonic

boom noise into the ocean.

Reviews of the relevant studies will be more thorough than in the previous section since
these researchers have concentrated specifically on sonic boom-type waveforms interacting

with the ocean.

3.2.1. Historical applications

3.2.1.1. Analytical theories

In 1968, Sawyers®® derived an expression for pressure in a homogeneous fluid half-space
due to a sonic boom interacting with the surface. This study made several assumptions
including the following: the fluid has an undisturbed. flat surface: the sonic boom is idealized
as a perfect N-shaped waveform: the N wave is infinitely long in the direction perpendicular
to its direction of propagation: the speed of the aircraft is less than the speed of sound
in the water: and that linear acoustics is valid because the sound levels are low enough in

amplitude by the time the sonic boom propagates to the Earth's surface.

Within a two-dimensional geometry, Sawyers’ derivation starts with the acoustic wave
equation, solves the Fourier-transformed equation, then inverts the transform to yield an

expression for sound pressure as a function of time ¢t. horizontal distance z in meters along
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surface. and depth z in meters into the water. This expression is given as
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In these equations. p is the acoustic pressure. p, is the peak pressure of the sonic boom. T is

the duration of the sonic boom. V' is the speed of the aircraft. and c is the speed of sound in
the water. The values of the arctan functions are contained in the interval (—n/2,7/2). It
should also be noted that for a single frequency the pressure field decays as e™'“I*/™ _ where
w is the angular frequency.

Sawyers nondimensionalizes Eq. (3.1) then plots the the nondimensional pressure values
at several depths. These results indicate. as he states. that whereas the shock wave in air
has an abrupt head and tail. the pressure disturbance underwater is seen to begin and
end gradually: the abruptness of the pressure wave diminishes with increasing depth (i.e.
the high frequencies die out quickly). In other words. the underwater pressure field is
evanescent. the waveform decaying as a function of depth. Figure 3.1 shows an example of
the evanescent wave at depths of 0. 10. 25. and 50 meters. These waveforms were generated
in Mathematica using functions written by Sparrow:*® these functions are based on Eq. (3.1).

In 1970. Cook!? also studied a perfectly N-shaped sonic boom waveform interacting
with a flat water surface. One of the focuses of the study was to find the sound pressure
distribution underwater caused by the incidence of this sonic boom onto the water surface.
Here. it was again assumed that the aircraft speed was less than the speed of sound in the
water. One of the differences between Cook’s work and Sawvers” work is that Cook includes
the effect of the different ambient densities in air and water.

The mathematical derivation starts with the underwater pressure, first expressed as
an evanescent wave. its amplitude decreasing exponentially with depth. This expression,
in combination with the Fourier transform of the function for the waveform in a moving

coordinate system, gives the equation for the underwater pressure in terms of integrals
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Figure 3.1: Evanescent wave at depths of (0. 10. 25. and 50 meters.

which can be solved using Laplace transforms. This underwater pressure p,. as a function
of r’. the horizontal component in a moving coordinate system. and h. a function of the
vertical component. the speed of the aircraft M. and the sound speeds of the media. can

then be expressed as

Pu (2’ h) =2cos A (I, cos A + IsinA) .

where
R? + (z' +1)° 2h

rl (£’ . h) = —ﬁlog _i—(x;)) + 2’ arctan | ———— 8| .

2 h?2 + (z' - 1) h? — 1+ (z')°

’ h2 ’ 1 2 2h (3 2)
wh(z'.h) = _z log —+(L), + harctan s —2.

2 h? + (=’ - 1) h? — 1+ (z')°

h=upuz".

M2 §
B = (1 - u,".!) :
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[n these equations A is the phase angle. 2’ is the vertical component of the moving coordinate
system. and W is the ratio of the speed of sound in water to the speed of sound in the
atmosphere. The term Q = arctan[ﬁi‘u,)z] is a multiple-valued function. For h # 0.
0<@Q<7m Forh=0.Q=0for—x<r<-landl<r<x:Q=nrfor-1<z <I:
and Q = 7/2 at ' = £1.

As stated in Cook’s paper. Sawyers expression for the underwater pressure agrees with
the I; part of Eq. (3.2). It was determined that although the function I, is also a part of

the complete underwater sound field. its contribution is negligible. Cook also illustrates the

sonic boom waveform decaying as a function of depth.

3.2.1.2. Experiments

In 1968 Young™ presented a paper on an experiment he performed which measured
sonic boom penetration into the ocean. The sonic boom source used was an F-8 aircraft
flying at Mach 1.1 or Mach 1.15 over a relatively flat ocean (2-ft. swell). Sound pressure
and sound exposure levels were plotted as a function of frequency for the sound above the
water and at several depths under water. Results show that a decaying waveform exists
underwater due to the sonic boom impact. Numbers indicate that for the peak sound
pressure level at frequencies above 125 Hz. a hydrophone located at a depth of 20 feet
measures about 25 dB less than that in air: for the sound exposure level the difference is
from 15 to 20 dB. The reductions at a 160-foot depth are about 5 dB greater than the
20-foot depth results.

In the early 1970s Waters and Glass®®® experimentally simulated the penetration of
sonic boom energy into the ocean. They performed an acoustically scaled experiment using
dynamite caps to produce spherically spreading N waves which impinged on a small body
of water. The following assumptions were applied: the aircraft is in horizontal steady
flight; the aircraft speed is less than the speed of sound in the water; the ocean surface
is flat. the ocean itself is homogeneous; only symmetrical N waves having zero rise time
are produced: and the results apply only to small regions of the intersection of the Mach
cone with the ocean surface, where the plane wave approximation is valid. Results from the
performed experiments indicated that in the underwater sound field the amplitude of the N

wave decreased rapidly with depth; also there was a rounding of the initial waveform as a
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function of depth. They concluded that the measured behavior was generally that predicted
by the existing theories.>3-!2

Also in the early 1970s. Intrieri and Malcolm?**! performed a ballistic range investiga-
tion of sonic boom overpressures in water. Their experiments included measuring under-
water pressure produced from flights of small gun-launched models over a water surface in
a ballistic range. The models flew at speeds both less than and greater than the speed of
sound in water. [t was assumed that for frequencies pertinent to full-scale sonic booms,
viscosity effects are essentially non-existent regardless of depth. It was also assumed that
the radius of curvature of the hyperbolic intercept of the Mach cone at the vertex is large
in comparison to the length of the N wave and depths of water of interest: it was therefore
safe to consider the incident wave to be planar. Results indicated that for a propagating
wave. where the speed of the model is greater than the speed of sound in water. there was
essentially no loss in peak pressure due to water depth. Where the speed of the model was
less than the speed of sound in water. an evanescent wave was created which matched the

existing analytical theories.?-!?

3.2.2. Recent applications

3.2.2.1. Theories: analytical and numerical

In 1995 Sparrow® numerically studied the effect of supersonic aircraft speed on the
penetration of sonic boom noise into a deep ocean. Sawvers theory®® was written into
Mathematica,”™ a symbolic manipulation program: here it was assumed that the water
surface is flat and that the aircraft is flying at a fixed altitude. By varying the Mach number
and studying the pressure at a fixed depth, it was shown that faster aircraft speeds produce
higher peak pressures at this fixed depth. Then by looking at different Mach numbers
and studying the pressure as a function of depth, it was shown first. that the pressure
field reveals a decaying waveform—as expected from Sawyers’ theory—and second, that for
increasing Mach number the peak pressure amplitude increases at each of the fixed depths.
In addition, the observation was made that at greater depths, the effect of increasing the

Mach number was enhanced. There was a difference of 15 dB peak sound pressure level
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going from Mach 1.4 to Mach 3.4 at a depth of 100 m: at a depth of 10 m. however. the

increase was only 5 or 6 dB.

In 1996 Cheng, et al.> performed a study of theoretical and computational issues
relating to sonic boom propagation and its submarine impact. They focused on the needed
improvements in the known sonic boom prediction methods: the improvements include.
among other things. the prediction of sonic boom noise penetration into the water. This
improvement extends a flat water analysis to one which incorporates ocean waves. Besides
the references just cited. Cheng and Lee!®(1997) also address the ocean surface waviness
issue. For the ocean surface it is assumed that the wave height to wavelength ratio is small
(< 1) and is assumed to have a sinusoidal profile. Lifting-line theory from aerodynamics
was employed to study the flat water case. then the use of oscillating supersonic airfoils
adds waviness to the problem. Results indicate that unlike the penetration depth for their
flat surface model which is only a fraction of the sonic boom effective wavelength. the
disturbance through the curvy surface can reach 5 to 10 times the sonic boom effective
wavelength. They concluded that ocean surface waviness augments the underwater pressure
field. It should be noted that it is unclear in these papers how the parameters they use for
ocean waves compare to realistic ocean waves or the approximations thereof found in the

open literature.

Sparrow and Ferguson® in 1997 numerically implemented a method based on Cook’s
theory!? to study the penetration of shaped sonic boom noise into a flat. homogeneous
ocean. The analytical method by Cook was expanded in order for the initial waveform to
take any arbitrary shape instead of just a perfect N wave. At the point where Cook applies
Laplace transforms, they performed a Fourier synthesis using discrete Fourier transforms:
the method for finding pressure as a function of depth was then programmed in Mathe-
matica.™ Using a perfect N wave as the initial waveform. the underwater results matched
those calculated by theory. Several other initial waveforms were applied: a hypothetical
F-22 airplane sonic boom (close to an N-shaped waveform) revealed a sound level decrease
with depth much greater than for a perfect high speed civil transport (HSCT) N wave; a
hypothetical flat-top HSCT sonic boom showed a decrease in sound level approximately the
same as for the perfect N wave: for an experimentally measured F-15 airplane sonic boom,

the rough perturbations in shape immediately leveled to the same rounded waveform as seen
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for a perfect N wave under water: and finally. for an experimentally measured F-16 airplane
sonic boom. the spikes in its U-shaped waveform did not persist in the underwater sound
field. Overall it was concluded that atmospheric turbulence effects or other perturbations

on incident waveforms have a minimal effect on the underwater sound field below 16 m.

3.2.2.2. Experiments

A paper by Desharnais and Chapman'?(1997) describes underwater measurements of
a sonic boom. During a sea trial on the Scotian Shelf. a vertical array of hydrophones.
there to record ambient ocean noise samples. unexpectedly recorded a sonic boom. They
extrapolated that the source of this sonic boom was an Air France Concorde in flight from
Paris to New York. The conditions of the experiment included a sand bank at 76 m depth.
low winds and calm seas (0.25 m swell. 10 kn wind). the plane was flying at a speed of
approximately Mach 2.0. and the hydrophones were located at depths ranging from 16.5
m to 65 m under water. Signal measurements indicated that an evanescent somewhat-
N-shaped waveform was recognizable in the water. with the typical exponential decay of
the amplitude with depth. Although the flight was not directly overhead, they applied a
modified version of Sawyers’ theory®® which accounts for the path offset. The first part of
the observed waveform was modeled successfully using this theory. Here it should be noted
that since these recordings were unintentional. there was not a microphone in the air to
record the initial waveform. There are some oscillations immediately following the decaying
sonic boom waveform which might be better explained if the initial waveform were known
but instead have been speculated to be the excitation of a low-frequency seismic mode at

the ocean/seabed boundary and not reflections from the ocean bottom.
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3.3. Conclusions and Remarks

Several researchers have addressed the issue of noise penetration from air into water.
For a general noise source in the air. it was shown that evanescent waves are a definite
contribution to the underwater noise and that curvature on the water’s surface enhances this
underwater pressure field. Theory has been developed for a perfect N-shaped sonic boom
penetrating a flat air-water interface: the underwater evanescent wave has been validated
by simulated experiments. Actual underwater data has been recorded of sonic booms where
the ocean surface was relatively flat: results seem to follow the known theories. Recently.
additions to the known theory include effects of aircraft speed. surface waviness. and shaped
sonic booms.

The inclusion of realistic ocean features in the problem of sonic boom noise penetration
into the ocean still needs to be addressed. Research on a wavy ocean surface is ongoing.
Cheng. et al.>' have presented initial results using an analytical method and the current
author simultaneously has addressed the problem computationally, where the methodology
and results will be revealed later in this dissertation. Also the effects of an inhomogeneous
ocean—an ocean containing bubbles near the surface—have not vet been determined: these

also will be discussed later in this work.
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Chapter 4.
Sound Levels Under Water

As was previously mentioned. the last decade has seen a new awareness of marine
environmental issues. Noise affecting marine mammals could include sonic booms from the
proposed HSCT. It is not clear what exactly a marine mammal would hear or how it would
be affected. but sound levels underwater can be calculated. weightings applied to get a

better sense of what is being heard rather than just a physical quantity.

4.1. Environmental Concerns: Marine Mammals

This section is based heavily on Ref. 49. Information in this section not related to
Ref. 49 is indicated with an alternate citation.

The marine mammals of interest are those whose eating grounds, mating grounds, or
migration paths coincide with the sonic boom carpet created from the supersonically flying
aircraft. This includes two orders of marine mammals: cetacea and carnivora. The two main
groups of living ceteceans include odontocete. or toothed. whales and mysticete. or baleen.
whales. Toothed whales include such animals as killer whales. beluga whales. dolphins.
and porpoises. Examples of baleen whales are bowhead whales. humpback whales. blue
whales. and gray whales. Types of marine carnivores. the second order. include pinnipeds.
sea otters. and polar bears. Pinnipeds are such animals as seals. sea lions. and walruses.
Because of the diversity among all marine mammals. the potential effects of sonic booms
depends on the type of animal involved.

In trying to evaluate the effects of noise on marine mammals, it is first important to
describe the ambient noise in the ocean. Types of environmental background noise are wind
waves, precipitation. seismic activity. biological. sea ice. and thermal (molecular agitation).
Background noise also includes distant human activities: shipping traffic noise, industrial
plants or construction activities on shore, offshore oil industry activities. naval operations.
and various types of marine research involving sound emission. Although varying, an ap-

proximate overall ambient underwater noise level (sound pressure level) is 90 dB re 1 pPa.
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Since part of this research shows the effects of wind wave height on a sonic boom waveform.
it is appropriate to mention that ambient noise levels tend to increase with increasing wind
speed and wave height. The change in decibels from a sea state of 0 (wave height 0 m)
to a sea state of 6 (wave height ~ 4 m) is approximately 25 dB for all frequencies. (Sea
state values and descriptions are found in the Beaufort Scale—available in many references
including Refs. 49. 7. 3. and 22.) It is therefore relevant to keep in mind, for later chapters.
that when studying increases in underwater sound levels due to surface roughness. ambient
noise levels are 25 dB higher than for the calm ocean case. It should also be noted that
ambient noise is dominated by wind waves for the frequency range of a few hundred hertz

to approximately 30 kHz.

Sounds and hearing of marine mammals are quite varying for each species. There is
a fair amount of data available on sounds. types ranging from songs and moans to tonal
whistles and pulsed sounds used in echolocation. Although audiograms (graphs relating
sensitivity to frequency) are available for many different marine mammals. there still is a
significant amount of data to be collected in order to fully understand the hearing of all
marine mammals. A very brief review of the different types of marine mammals follows.
Data show that most baleen whales emit sound pressure levels of 150-190 dB re 1 pPa (at
1 meter): some have fundamental frequencies as low as 20 Hz. Their most sensitive hearing
is in the range of 20-50 Hz. but they can hear even lower frequencies well. For toothed
whales. most energy of their sounds is typically near 10 kHz at a level of 100-180 dB re 1
pPa. However for echolocation. these animals can vocalize pulsed sounds in the frequency
range of 30-100 kHz. where the peak level can reach 210 dB re 1 uPa or higher. Toothed
whales’ hearing is most sensitive above 10 kHz where the upper limit is anywhere between
64 and 100 kHz. They can hear at low frequencies, but the sensitivity is poor. Pinnipeds
vocalize mostly at frequencies ranging from less than 1 to 10 kHz; the source levels range
from 95-178 dB re 1 pPa. These animals’ hearing varies. but a typical sensitive range is

1-50 kHz.

With any of the marine mammals, it is also important to look at the critical signal-
to-noise ratio for particular frequencies. The critical ratio (CR) is defined as the amount
by which a pure-tone signal must exceed the spectrum level background noise in order to

be audible. CR values typically range from 15 to 40 dB: however, in certain cases, the CR
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value may actually be slightly negative. If a signal does not match or exceed the CR it will

be masked behind the background noise, and the animal will not perceive the sound.

In addition to the hearing of the marine mammals. it is very important to include
the psychoacoustic effects involved with different types of noise. Two terms are defined
here to help understand disturbance reactions. Behavioral habituation is defined as the
progressive waning of responses to stimuli that are learned by the animal to lack significance.
Sensitization is defined as the increasing responsiveness over time. An animal that has
habituated no longer behaviorally reacts to a man-made noise source: in contrast, an animal

that has become sensitized to a noise reacts more strongly with each occurrence.

The man-made noise of consequence here is aircraft noise. Most documented distur-
bance reactions due to aircraft involve pinnipeds. Effects of sonic booms on pinnipeds
have been studied. but effects on cetaceans have yet to be evaluated. The existing data
on cetaceans involve just aircraft overflights. Effects of sonic booms from supersonic air-
craft are special cases because of their high levels and sudden onsets. For seals. it was
observed that sonic booms caused a startle reaction involving some movement or stam-
pedes into the water: there was no evidence of mortality due to trampling or abandonment.
Toothed whales may react to aircraft overflights (not sonic booms) by diving, submerging
for longer periods. slapping the water with flukes or flippers. or swimming away from the
aircraft track. Baleen whales may react to low flying aircraft by hasty dives. turns. or other
changes in behavior. responsiveness depending on the activities and situations of the whales.
Whales actively engaged in feeding or social behavior often seem rather insensitive: whales

in confined waters. small groups. or with calves sometimes seem more respounsive.

To get some idea of how a whale may react to a sonic boom, one can evaluate their
reactions to other impulsive sounds. Following are some documented cases of reactions to
impulsive sounds. It was found that 90% of gray whales behaviorally reacted to a broadband
source (an airgun) of sound pressure level 180 dB re 1 pPa. In a different study. it was found
that gray whales. when exposed to an airgun source at or greater than a sound pressure
level of 160 dB re 1 uPa. were deflected from their migration path along the California
coastline.”® Humpback whales seemed startled when an airgun source reached between 150
and 169 dB re 1 uPa. Gray whale reactions to explosions ranged from seemingly unaffected

to interrupted migration or elicited “snorkeling” behavior (breathing out under water).
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Captive false killer whales showed no obvious reaction to single noise pulses from small

charges where the received level was 185 dB.

As is seen by the above mentioned decibel levels. sonic boom noise levels (typically
150-170 dB re 1 pPa) may cause a behavioral reaction in marine mammals. It is unlikely.

however. that these levels would cause any hearing damage.'*

Overall, noise from human activities sometimes causes pronounced short-term behav-
ioral reactions and temporary displacement. The continued presence of various marine
mammals in certain areas. despite much human activity. suggests that many marine mam-
mals are quite tolerant of roise and other human activities. However. there may be no
suitable alternative locations for some marine mammals: they may be just tolerating the

noise and/or experiencing stress.

4.2. Sound Levels

Recently. sound levels were calculated as a function of depth in order to determine
the volume of the underwater sound field.*® But it should be emphasized that what was
calculated was peak sound pressure level. a purely physical quantity that does not account
for the change in spectral content of the penetrating sound wave as a function of depth. This
purely physical quantity also does not account for the way in which a sound is perceived.

either by humans or other mammals.

It is necessary to apply frequency weighted spectra to determine the depth-dependent
sound levels perceived by a listener. The weightings or noise descriptors used are determined

by the type of sound and the listener.

Even though the significant frequency content in a sonic boom is below 400 Hz. the
most significant being below 10 Hz, a sonic boom is characteristically impulsive; this implies
that high frequency content does exist. As explained in Chapter 2, most of the sonic boom
energy, about 99.7%. is contained in frequencies below 400 Hz: about 0.3% of the energy
is in frequencies above 400 Hz. For an evanescent wave associated with a sonic boom
impinging on the ocean surface the higher frequencies diminish rapidly, leaving a waveform

composed mostly of lower frequencies. These distorted waveforms, somewhat less impulsive
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than N-waves. still have a significant amplitude and short duration: it remains appropriate

to apply known sonic boom noise descriptors.

Currently there are no noise descriptors available for marine mammals to help evaluate
how they may perceive a sonic boom. In an effort to examine a wide range of potential
descriptors. both unweighted and weighted metrics are employed. Although the weighted
metrics were extrapolated from human data and anatomy. the calculated sound descriptors
may help determine some realistic measure of annoyance experienced by marine mammals.
Applying several different frequency weightings to the distorted sonic boom waveforms

should show how relative measures of loudness or noisiness change with depth.

For a subjective description of sonic boom loudness. it is most preferred to use the
Mark VII perceived level (PLdB) of Stevens®® and next A- or C-weighted sound exposure
levels (Lg).® The physical description of sonic booms is better represented by peak sound
pressure levels or unweighted (flat) or C-weighted sound exposure levels.® Applying both
the subjective and physical descriptors allows for a comprehensive evaluation of sonic boom
noise.

The Mark VII perceived level. the most recommended sonic boom noise descriptor. is
closely aligned with the behavior of the human auditory system in the subjective evaluation
of acoustic energy. It utilizes a set of frequency-weighting contours based on an average
of 25 experimental contours. Version VII was extended to the lower frequencies in order
to facilitate the calculation of the perceived level of impulses and sonic booms. A simple

equation does not exist for this noise metric.

Sound exposure level is defined as the time integral of sound level over the course of a

single event.* It is written in equation form as

x 2

Le= 1010g/ Bros 4t 7, (4.1)
-x Pref

where p,m; is the rms pressure. p,. is the reference pressure, and 7, is the reference time,

taken to be 1 second. Since this research considers a sonic boom to be 2 events (2 bangs),

3 dB is subtracted: only the energy from half the waveform. cither the positive pressure or

the negative pressure, should be included in the single event. (Equation (4.1) includes the

energy of the entire waveform.) The equation that will actually be used for calculations is
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in a discrete form: it is written as

Vi 2
%050 (D (1) /2
Le=10|logAt S \Pr ‘p2 ) -3, (4.2)
1=1 ref

where At is the time interval between samples. Ppeak 1S the peak pressure, and NoSamp is the
number of pressure samples. Unweighted sound exposure level. written Ly . is equivalent
to Lg.

Two different weightings are recommended for the sound exposure levels as descriptors
of sonic boom noise: A weighting (mentioned in Ref. 54) and C weighting (mentioned
in Ref. 6). An A-weighted sound exposure level is written as L.z and the C-weighted
sound exposure level as Lcg. The A weighting roughly accounts for the frequency response
characteristics of human hearing, while C weighting places more emphasis on sounds of
low frequency. A plot of the different weightings can be seen in Fig. 4.1.%' Here AL(f)
is the decibel amount to be subtracted from the unweighted measurement at a particular
frequency. Simple equations for both A and C weighting are found in ANSI Standards.?
The equation for C weighting is

H}_-:lOlog( , f‘:‘ﬂ_ . ) : (4.3)
(fP+ )Y (f2+ f)

and the equation for A weighting is

I, = 10log e R 14
T ((f2+f5) F+73) c .

where f is the frequency (in hertz) to be weighted. and the constants are
fi = 20.598997. K, =2.212881 x 10',
f» = 107.65265. K3 =1.562339 .

f3 = 737.86223.

fa=12194.22,
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Figure 4.1: Relative response functions for A and C weightings. Plot
adapted from Ref. 1.

4.3. Weighted Sound Levels of Evanescent Wave

Now that it is understood why it is important to determine underwater sound levels and
how it is possible to quantify the physical and perceived sound. this section will provide a

description of how calculations are made of sound levels of a decaying sonic boom waveform.

4.3.1. Calculating the sound levels

For this research. the sound descriptors applied are peak pressure level (peak dB). un-
weighted sound exposure level (Lyg). C-weighted sound exposure level (Lcg), A-weighted
sound exposure level (L,g). and Stevens’ Mark VII perceived level (PLdB). All of these
sound descriptors are calculated as a function of depth using a program written in Mathe-
matica™ and a Fortran program developed at the NASA Langley Research Center.5® Func-
tions for A- and C-weighted filters were developed in Mathematica: these functions are
based on Egs. (4.3) and (4.4). Also developed in Mathematica was the sound exposure
level function which is based on Eq. (4.2). The Fortran program was used to calculate the

perceived level of sound (PLdB).
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All of the Mathematica functions can be found in Appendix A. In addition to the ones
developed for this research. functions for generating the pressure data as a function of
time. depth. and sonic boom parameters were utilized. These functions were those used
by Sparrow:* they are based on Eq. (3.1), the equation developed by Sawyers® for the
underwater evanescent pressure field.

The calculations proceeded as follows: the pressure waveform was generated (either
as an N wave at the surface or the decaying waveform with depth). the peak pressure
sound level was calculated. a Fourier transform was applied to enter the frequency domain.
weighting filters were applied where necessary. an inverse Fourier transform was applied
to get back to the time domain. and finally the sound exposure levels were calculated.
Examples of this procedure can be found in Appendix A.

It should be noted that the pressure data were composed of 16.384 samples corre-
sponding to a sampling frequency of approximately 10 kHz. The tails of the distorted
(underwater) sonic boom waveform were linearly forced to zero to avoid enormous calcula-
tions which would result from using a window large enough to capture the entire waveform:

please refer to Fig. 4.2. Also the reference pressure was 20 pPa.

waveform tail

axis

Figure 4.2: Cutting off the tails of the distorted (underwater) sonic boom
waveform.

The A- and C-weighted sound exposure level functions were tested using one set of

known sonic boom measurements where weighted sound exposure levels were stated. In
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1989 Young™ measured sonic booms from a flyover of the space shuttle Atlantis four min-
utes before its landing at Edwards Air Force Base. Sound exposure levels in the air were
calculated using various instruments. Two A-weighted sound exposure levels L,z were
measured at 83.2 dB and 82.6 dB and two C-weighted sound exposure levels Log at 102.4
dB and 101.8 dB. Since these measurements included all energy from the sonic boom. 3 dB
should be subtracted to account for the two single events of the long duration signature:
this would yield values of 80.2 dB and 79.6 dB for A weighting and 99.4 dB and 98.8 dB
for C weighting. After subtracting the 3 dB it is now possible to compare values to ones
calculated using the Mathematica program. With N wave parameters approximated using
a plot of the measured sonic boom waveform. L g was calculated to be 77.7 dB and Lcg to
be 100.0 dB. The differences in magnitude of 1.9-2.5 dB for the A-weighted and 0.6-1.2 dB
for the C-weighted sound exposure levels could be explained by the many approximations
implemented and also a low sampling frequency. This comparison was performed simply to
see if the values were somewhere in the range of one set of known sonic boom measurements:

it was determined that. in fact. the numerically calculated values were sufficient.

4.3.2. Program runs

In order to generate normalized sound descriptor results. it was first necessary to pick
realistic parameters as inputs to the programs. It was assumed that the hypothetical su-
personic aircraft was traveling at Mach 2.4 and created an N-shaped sonic boom with a
duration of 300 ms and a peak pressure of 50 Pa (approximately 1 1b/ft?). Because of the
great impedance mismatch between air and water. the pressure at the water surface was
doubled creating a peak pressure of 100 Pa both just above and below the surface.

Using this information. the Mathematica and Fortran programs calculated the sound
descriptors as decibel values for various depths. The Fortran program's option of adding
a short rise time to the waveform was used in calculating the PLdB metric. The data
in Table 4.1 represent the sound descriptors at the surface of the water (referenced to air
and water) due to the sonic boom generated by the hypothetical supersonic aircraft. It is
observed that the unweighted peak sound pressure level is the highest and L is the lowest
decibel value. It is also seen that the weighted sound descriptors. Lcg, Lag. and PLdB,

are all lower in decibel level than the unweighted sound exposure level, L.
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Table 4.1: Decibel levels at surface of water using hypothetical parame-

ters.
depth reference dB peak Lye Lee Lig PLdB
(meters) pressure (dB) (dB) (dB) (dB)
0 20uPa 131.0 118.0 108.0 94.4 106.1
0 1uPa 157.0 144.0 134.0 120.4 132.1

After calculating the surface sound levels. values for the various sound levels at several
different depths were examined. The same sound descriptors were applied to the sonic
boom noise at 1. 2. 4. 8. 16. 32. 64. and 128 meters. The results for these depths were then

normalized relative to those at the water’s surface.

4.3.3. Results

The relative sound descriptors as a function of depth are presented in Table 4.2. It
is seen that Leg. Lyg. and PLAB all drop off more rapidly with depth than do the peak
and unweighted levels. L,g values decrease much more quickly with depth than Lcog or
PLdB values. Examining the levels at a depth of 16 m. the peak and L, g metrics have
only decreased a few dB. which to humans is barely perceptible. The weighted levels of
Lcg. Lig. and PLAB have all decreased approximately 20 dB or more. which is an easily
detectable change. Although the calculations of the sound level at different depths were
made assuming a reference pressure of 20 uPa. the relative values in Table 4.2 are also valid
if one instead uses any other reference pressure. such as 1 pPa.

A plot of all the different sound descriptors as a function of depth relative to the ocean
surface is found in Fig. 4.3: values for this plot were taken directly from Table 4.2. It is
obvious from these curves that the weighted noise descriptors show a much more drastic
decrease in decibel level with depth than the unweighted descriptors, especially the A-
weighted sound exposure level.

The results described here for the sound level work are also found in Rochat and Spar-

row.%!
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Table 4.2: Decibel levels as a function of depth relative to those at the
surface. found in Table 4.1.

depth dB peak Lyg Lee Lag PLdB
(meters) (dB) (dB) (dB) (dB)
0 0.0 0.0 0.0 0.0 0.0
1 -0.9 -0.3 -6.8 -18.6 -7.9

2 -1.4 -0.5 -8.6 -25.1 -11.7

4 -2.0 -0.9 -11.3 -33.3 -17.5

8 -3.0 -1.6 -15.1 -13.6 -24.7
16 -1.6 2.7 -20.1 -56.2 -30.7
32 -7.2 -4.7 -26.1 -71.0 -35.0
64 -11.6 -8.1 -33.0 -84.8 -38.7
128 -13.4 -13.4 -42.0 -91.5 -12.4

4.3.4. Discussion of results

This section has examined several sound descriptors as a function of depth for an N-
shaped sonic boom penetrating a flat ocean surface. The parameters used correspond to
a hypothetical supersonic passenger aircraft. At the surface. the sound level re 20 uPa of
a 50 Pa peak pressure, 300 ms duration sonic boom ranged from 94.4-131.0 dB (120.4-
157.0 dB re 1 pPa). depending on the metric applied. At 128 meters under the surface.
the sound level dropped off as much as 91.5 dB for the A-weighted sound exposure level.
approximately 42.0 dB for the other weighted metrics. and 13.4-18.4 dB for the unweighted
metrics. Since A weighting does not favor the lower frequencies, the decibel drop-off from
the surface is quite drastic: the high frequencies diminished rapidly with depth. The other
weighted metrics also decayed more rapidly than those unweighted. but not as rapidly as the
A-weighted one since more of the lower frequencies are emphasized. This work has shown
that the perceived noise levels may decrease rapidly with depth from those at the ocean
surface. and the impact experienced may be significantly diminished compared with that
predicted using unweighted levels. This result may be important in evaluating the possible
sonic boom noise impact on marine mammals. Clearly the metrics used in this section were

those appropriate for humans. and metrics should be developed specifically for pinnipeds
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Figure 4.3: Plot of decibel levels as a function of depth relative to those
at the surface. Values of all sound descriptors are taken from Table 4.2.
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and cetaceans. At the present time. however, the noise descriptors for humans provide us

our only prediction of the potential annoyance experienced by marine mammals.
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Chapter 5.
Computational Aspects

Chapter 1 described the underwater sound due to a sonic boom impinging upon a flat
ocean surface. What now needs to be quantified is the underwater sound due to a sonic
boom interacting with a more realistic ocean. one with 2 wavy surface or bubbles near the
surface. Simple theory cannot be applied in these cases. as it does not yet exist.

It is necessary to choose a method for analysis. either analytical. experimental. or
computational. to solve the problem at hand. Since the supersonic airplane motivating
this research does not yet exist. it is important to have the flexibility of varying several
parameters in order to find overall trends for the underwater sound field. It is obvious that
an experimental solution is not yvet possible for an actual HSCT. It is. however. possible to
obtain data from other supersonic aircraft. such as the Concorde or military aircraft. but
achieving all of the appropriate combinations of aircraft speed and ocean wave height or
bubbles (discussed in detail later in this work) would be a costly task. If one were to derive
an analytical solution. it would have to be general enough such that the aircraft and ocean
parameters could all be input variables: this would be quite complicated. One method of
analysis remains: computational. Here difficulties can arise because of the computational
grid approximation of the ocean surface and because of the huge impedance change going
from air to water. However. as long as the difficulties involved can be overcome and a stable
and accurate code realized. a computational approach can analyze a sonic boom interacting
with the ocean surface and its corresponding underwater sound field. including the ability
to vary the parameters with ease. In the end. the method chosen for analysis in this research

was computational.
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5.1. Choosing a Computational Method

Today many accurate methods in computational aeroacoustics are available to solve
a wide variety of physical problems. In recent years several of these methods have been
successfully implemented.”® Each method uses chosen schemes and boundary conditions
and has advantages over others according to the problem at hand. In choosing a method.

one must assess the current problem and limit the range of possibilities.

5.1.1. Key elements in choice of method

In computational work it is desired to find schemes which have minimal numerical
dispersion and dissipation errors: since linear. lossless acoustic waves are nondispersive and
nondissipative in their propagation, they should be modeled as such.?” Dispersion is caused
by numerical artifacts that selectively alter phase shifts among the component wavelengths
at each time step:'® it produces unwanted added ripples or small spurious waves. Dissipation
is caused by an attenuation of part of the answer at each time step: the acoustic wave is
dissipated due to truncated terms in the discretized wave equation. Generally. higher-order
schemes are usually less dispersive and dissipative. but these schemes come with a price:
the higher the order. the more computationally intensive it becomes. So it is a question of
accuracy versus efficiency and what is best for a specific problem.

Besides the order of the scheme. there are three key elements in choosing a method:
the mesh (structured or unstructured. fixed or adaptive), the space discretization (centered
or upwind). and the time derivatives (explicit or implicit).?® A brief description of each
of these elements follows. A structured mesh allows several methods to easily run, while
an unstructured mesh may be hard to incorporate into particular schemes; the mesh (grid)
really has to be formed for a particular problem, possibly adding refinement to areas in the
domain where intricacy is important. One of the choices for space discretization is centered
difference methods: because they lack mechanisms to suppress high frequency spurious oscil-
lations, they sometimes require added dissipation terms which have to be calibrated to each
problem for optimum performance. For upwind methods. more arithmetic operations are re-

quired, making the program more time consuming; however, they are problem-independent
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formulations in that they utilize a mechanism for preventing oscillations and instabilities.
If artificial dissipation is easily added or not necessary. a centered difference method should
be chosen. Choosing between explicit and implicit time derivatives is very problem depen-
dent. Explicit methods are good for time-dependent/unsteady problems: these methods
are simple to program and have a minimal cost per time step. but stability conditions
severely limit the maximum allowable time step. Implicit methods generally satisfy time-
independent /steady-state problems. although they can be applied to unsteady problems as
well: these methods allow unlimited time steps (although not always producing accurate

solutions) but at an increased computational cost and more laborious programming.

5.1.2. Tools for discretization

Three different tools can be utilized for the discretization of differential operators: finite
difference. finite element. and finite volume.?® Finite difference methods are the oldest
methods applied to obtain numerical solutions of differential operators. They are based on
properties of Taylor expansions and on the definition of derivatives. Although these are
the simplest of the tools. they require a high degree of regularity in the computational grid
(mesh). On these grids. the grid points are distributed along families of nonintersecting lines.
Although past criticism has stated that finite difference methods are not widely accepted
as a numerical approach to wave propagation problems. there are many current methods
which successfully overcome the faults of their predecessors.?! Many robust methods have
become available. each being more or less applicable to a particular problem. It should be
noted that a significant amount of documentation on acoustic propagation problems solved

with computational analysis involves finite difference methods.

The next tool. the finite element method, has been traditionally used for structural
analysis. Finite element approximation requires the definition of an integral formulation.
In these methods the space domain is discretized by the subdivision of the continuum into
elements of arbitrary shape and size. usually triangular or quadrilateral figures. Within
each element points called nodes are positioned along the sides. Derivatives need to be
determined at each one of these nodes; this requires heavy bookkeeping. An advantage of

the finite element method is that it is flexible for use with unstructured grids.
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The finite volume tool also requires an integral formulation: here the conservation laws
in integral form are discretized. (The behavior of a physical system is completely determined
by conservation laws: during the evolution of a fluid. a certain number of properties, such as
mass, generalized momentum. and energy. are “conserved.”) This method is easily adapted

to any arbitrary. unstructured grid.

5.1.3. What to choose?

In addition to the material covered in this section. consideration should be given to
whether or not the method is well-documented. Derivations and examples can be very
useful when trying to formulate a unique scheme for a specific problem. Also. what should
always be kept in mind is how reasonable the method is: simplicity is best for understanding
and implementing the method. and efficiency is best for making computations affordable.
One final choice to be made concerns the boundaries of the computational domain. Instead
of listing the many possible boundary conditions here. the boundary conditions applied to
this particular problem will be discussed in detail later in this chapter.

Hirsch®® sums up well the process of choosing a computational method:

A large variety of efficient methods are available but objective recommendations
seem hardly possible since none of the approaches has come out with undis-
puted advantages over others. Hence. the final selection will most probably
be a combination of subjective judgment, experience and personal non-rational
choice.

5.2. Chosen Method

The present research involves a sonic boom propagating in air near the surface of the
ocean: it then interacts with the air-water interface penetrating to the area of interest,
the underwater sound field. A two-dimensional simulation is desired with the possibility of
upgrading to three dimensions. Also refinement in the grid (making it nonuniform) becomes
necessary when adding curvature to the ocean surface. With this information it is possible
to choose an appropriate computational method.

Wave propagation is inherently time-dependent; an immediate decision is to apply an

explicit method that is easily upgradeable to three dimensions. Also, due to the needed
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refinement, a nonuniform grid is desirable. This grid can still remain quite structured,
having only a small area of refinement in one direction of the grid. (Details will be given
later regarding the refinement.) Finite differences are chosen because they are: straight-
forward: well documented for acoustic wave propagation: and can be modified to model
both nonlinear propagation. appropriate for very loud sound booms, and inhomogeneous
media, appropriate for turbulence in the air and bubbles in the water. Centered difference
methods are chosen for the space discretization. The problem is initially solved without
adding dissipation: it is found that the method causes no unwanted spurious oscillations
which interfere with the solution. so the added dissipation is not necessary for this research.

Two different finite difference schemes are necessary for the chosen computational
method. In the air and in the water a 2nd-order centered difference scheme is applied.
Since the incident wave sees a huge impedance change when hitting the air-water interface.
a conventional finite difference scheme goes unstable at this point; a scheme that can han-
dle such an impedance change. one similar to a geophysics method. is applied right at the
interface. The computational domain variables. two finite difference schemes, the bound-
ary conditions. and a stability analysis will be discussed in the remaining sections of this

chapter.

5.2.1. Computational domain variables

There are many different variables to consider in the current problem: these include
computational variables (grid parameters) and physical variables (sonic boom parameters.
ocean wave heights. bubble parameters. and media). Before discussing the method used on
the computational domain. the domain variables will be given. The physical variables will
be discussed as they are introduced in the following chapters.

The computational domain in this work is a rectangular grid. This grid physically rep-
resents a region with these dimensions: 799 meters in the horizontal direction (z direction)
and 781 meters in the vertical direction (z direction). The 781 meters are divided into
340 m in the air and 441 m in the water. The number of grid points does not match the
number of meters: there are 800 grid points in the z direction and in the z direction. This
nonuniform grid has a refined region surrounding the air-water interface. Grid refinement

is a necessity in areas of the domain having detailed features. A wavy ocean surface and
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bubble layers are going to be added to the domain to represent realistic ocean features:
it is known from the programming of these features that grid refinement is a necessary
addition for the program'’s stability. In the refined region a grid block spans 1 meter in the
z direction (Az = 1 m) and 0.25 m in the = direction (Az = 0.25 m); this refined region
physically extends 3 m above and 3 m below the mid-line of any ocean interface. Elsewhere
in the domain. a grid block spans 1 m in the z direction (Az = 1 m) and also 1 m in the
z direction (Az = 1 m). An example of how the computational grid in the region of the
air-water interface would look is illustrated in Fig. 5.1: this illustration does not represent

the actual number of grid points contained in the refined region.

l Az=10m
refined P glr-ivfater
grid interface
region N A 095

I Az=1.0m

Arz=10m

Figure 5.1: Illustration of computational grid near in the region of the
air-water interface: this illustration does not represent the actual number
of grid points contained in the refined region.
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5.2.2. Air/Water scheme

In the air and water the method of wave propagation consists of 2nd-order centered
difference schemes for both time and space. This method evaluates the acoustic wave
equation directly using both basic finite difference approximations for a uniform grid and
special finite difference approximations for a nonuniform grid. Altkough this is not a high-
order method. it seems to give reliable results in an efficient manner. Issues regarding

higher-order schemes are addressed later in Chapter 9.

5.2.2.1. Basic finite difference derivative

The basic finite difference method for calculating a derivative is based on the definition

of a derivative.?
dp _ . plz+Ax)-p(x)

=——-=1

Jdr ar—o Ar (5-1)

r

Here p is pressure. For computational grids it is obvious that Az is not zero but rather a

small finite value. and the equation must be written

_9 _plr+Ar)-p(z)
Pz =577 Az

+ truncation error . (5.2)

The approximation can be improved by reducing Ar. The power of Ar with which this
error tends to zero is called the order of the difference approximation and can be obtained

from a Taylor series expansion of p(r + Azx) around point r.

Az’
p(z+ Ar) =p(z) + Azp, () + —5 P (T) ... (5.3)
where p., is the second derivative. Equation (5.3) can be rewritten as

p(z+ Ar) — p(z)
Ar

=p. () + %pn () + ... (5.4)

or
p(r+ Az) —p(z)
Az

Here, p.(z) is expressed in first-order accuracy where O(Axz) is the truncation error.

= p. (z) + O (Az) . (5.5)
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5.2.2.2. Derivation of air/water finite difference scheme

The two-dimensional acoustic wave equation is
52 32 32

where p is the acoustic pressure and ¢, is the speed of sound in the medium. This is a
hyperbolic differential equation. The physics implies that the solution at some time ¢ is
dependent only on past times: therefore. this equation can be solved using a time-marching
scheme.”® Two different derivations will be shown: the first is a centered finite difference
approximation for a uniform grid for the terms g;% (= p::) and 3—3 (= pit)- the term used
for the time marching, and the second is a centered finite difference approximation for a
nonuniform grid for the term 3—_3 (= p::). The uniform grid derivation will be given just in
terms of r. not t. so as not to be repetitive.

The centered finite difference approximation for a uniform grid starts with two Taylor

series expansions.

A 2 W3

p(r+ Az) =p(r) + Azp; (r) + —:—pn (r) + g Prax (z)+... . (5.7a)
A' 2 A 3

Pz =Az) = p(x) = Arp. (£) + 5pur () = —Pre () + ... (5.7D)

Adding together Eqs. (5.7a) and (5.7b) produces the equation
Azt 9'p(x)

p(r+Azx)+p(r—Ax)=2p(z) + Ar’p,, (1) + . (5.8)
12 9zt
Solving for p,, in Eq. (5.8). the second derivative can then be written as
_ P+ —‘Zp‘ + Pt A L2
Prr = AI?' + 0 (AI ) . (5.9)

where the index i represents the grid point in the z direction (p(z) = p, and p(z + Az) =
Pux1). and the argument (x) has been suppressed.
The 2nd-order centered finite difference approximation for a nonuniform grid. derived

using Hirsch.? starts with two Taylor series expansions.

Az ,? Az 8
P(z+820) = p(2) + Azjpaps (3) + =Fpe: (3) + —5pez (3) + ... . (5.100)
Azjz Az
p(z—Az) =p(z) - Azp.(2) + 5 Pz (2) — G Ps:: (z)+.... (5.100)
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As was explained earlier. Az is grid-placement dependent and must be represented using
the vertical grid index j. Multiplying Eq. (5.10a) by Az, and Eq. (5.10b) by Az, then

adding the two equations together yields

Here. p(z) = p,. p::(2) = (p:2),- P:2:(2) = (pe22)). p(z + Azj41) = pygr. and p(z — Az)) =

2

pj-1- Taking Eq. (5.11) and multiplying it by < KT v then performing several

steps of manipulation. an expression for the second derivative on a nonuniform grid becomes

(3]

Pi+1=DP, Py = D)=
), = [Pt i)

1 ‘
A A (Azjo1 = Az,) (Pazz), + .. . (5.12)

Az + Az 3
As a check to see if Eq. (5.12) is correct. the grid for the p.. derivative is made uniform.
Az; = Az = Az, and Eq. (5.12) becomes equivalent to Eq. (5.9).

Now that approximations have been derived for all the derivatives, it is possible to
reveal the finite difference scheme which represents the acoustic wave equation in the air
and in the water:

pirt=2p0, = pyt + i (A’

o | Prrry 2P0 P, (pi‘.ﬁl P Pl = pf‘,,_l> 2 (5.13)
(Al‘)., AZJ.;.l A:j A‘:_]+l + Azj )

where the index n represents time and the indices i and j, the grid points in the z and z
directions. respectively. represent space. The variable p is the acoustic pressure. c, is the
speed of sound (different for each medium). At is the time increment. Az is the spatial
increment in the r direction (horizontal), and Az is the spatial increment in the z direction
(vertical). In general. Az, = z, — z,_,, z, being the physical location at index j on the grid.
As is indicated by Eq. (5.13). the computational grid must be uniform in the z direction
but allows for nonuniformity in the z direction. This air/water finite difference scheme
can be found in Appendix B: Appendix B contains all of the Fortraq code for the two-
dimensional 2nd-order simulations: the air/water finite difference scheme appears in the
subroutine sochdiff2d.

This finite difference scheme requires a 3-point stencil for each of the spatial derivatives.

In other words. information at three consecutive grid points (3 horizontal and 3 vertical)
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will be used at every time step to calculate a derivative. Figure 5.2 represents this 3-
point stencil. A 3-point stencil is typical for a 2nd-order centered derivative: more points
are required for higher-order centered derivatives. The time derivative also involves three
values: the pressure at the current time (what is being calculated) and the pressure at two

previous times (¢ — At and ¢ — 2A¢).

-1 7 1+1

| @ : pointin =
derivative stencil
7+l (O: pointinz
derivative stencil

<
Jar
NV
N
NV

IL\:

Figure 5.2: Illustration of a 3-point stencil for each spatial derivative on
the computational domain.

[t is purely the two-dimensional wave equation which is numerically represented. An
attenuation term is not added for underwater propagation. Although this attenuation can be
quantified in decibel loss over a distance, such as found in Jensen. et al..?° it is determined
that this loss is insignificant. The attenuation is frequency dependent. The significant
frequency content in a sonic boom is below 400 Hz (most significant being below 40 Hz),
as was stated in Chapter 2: for these frequencies. the loss over 800 m is at most calculated
to be 0.01 dB. an amount which does not affect the results which will be presented in this

dissertation.
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5.2.3. Interface scheme

Since the air-water interface denotes a huge impedance change. it is necessary to im-
plement a scheme capable of handling the changes in speed of sound and density. Although
finite differences can easily handle the sound speed change. a factor of 4.4 between air and
water. most finite difference schemes will go unstable with the huge change in ambient den-
sity. a factor of approximately 826. For example. if used alone Eq. (5.13) will go unstable
at the air-water interface.

To overcome this difficulty of instability, a finite difference method different than
Eq. (5.13). similar to one used in seismology. is applied at all grid points within :i:%A:
of the air-water interface. (If the interface does not intersect any grid blocks, the scheme is
actually applied right on the interface.) The scheme is derived by integrating the acoustic
wave equation across the interface: this ensures proper reflection and transmission coeffi-
cients. This method was originally applied by Sochacki. et al.’*® for acoustic and elastic
wave propagation.

The derivation. which follows that in Refs. 56 and 59. begins with the inhomogeneous

wave equation.

2 ()
-— -V.{——Vp|=0. 5.14
Po(r.z)c2(r.z) Ot? Polr.z) P ( )

Notice that the density p, and speed of sound ¢, are dependent on the grid location. Rewrit-

ten. letting a(r. 3) = s-—>7 and b(z.2) = 1. Eq. (5.14) becomes

Polz.2ic(r.

3*p
o8

-V (b(z.z)Vp)=0. (5.15)

a(r.z)

For simplicity. the remainder of the derivation will be for the one-dimensional wave
equation; the two-dimensional formulation will be stated at the end of the section. In this

one-dimensional derivation. Eq. (5.15) is written
apee = (bp:). =0 . (5.16)

with the arguments suppressed. Integrating this wave equation across the air-water interface

yields

/ apy dz =/ (bp:). dz . (5.17)
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where |€| is a small distance from the interface. The two terms in Eq. (5.17) can be written
as
e ] ‘ €
/ ap,dz = a‘/ Predz +a’/ D dz (5.18)
- 0

and . i
/_ (bp:). d= = bp.|*, = b(€) p: (e.£) — b(—e) p, (—€.¢)
=b"p.(e.t) — b p.(—e.t) .

where @™ and b™ are calculated using the variables in the medium just above (e above) the

(5.19)

interface. air. and ¢~ and b~ using the variables in the medium just below (e below) the
interface. water.

Using the mean value theorem for integrals,

" fF)dy = f(y)(ya—wy1). N<y<y:. (5.20)

Y1

Eq. (5.18) can be equated to
a”pu (z7.t) e+ aTpy (z7.t)e . (5.21)

where —e < :7 <0 and 0 < =7 < e. Letting |¢] — 3Az. and z*.z~ — :. the integrated

wave equation can now be expressed as

Az s , Az Az
e [a' + a’j Dtt (Zt) = b?p; (T t> - b—p: (—'—()—t) . (522)

& 4 4

Using a centered finite difference approximation for p,, and one-sided differences for p.. the

inhomogeneous wave equation becomes

a” +a* nil en - B b+ . ) b- i ) ‘
( 2AL? ) (pj —2p] +pj )AZ_ Az (P,+1"P1)_E<PJ —pj_1> . (523)
aud the one-dimensional 2nd-order finite difference scheme is
1 A¢?
n+l _ n n—1 n n . I
Py =20 R ZI:_-’ [b“%pﬁl - (b1+% + bJ-%) p; + b,-{,P_,_l] (5.24)

a . d +a -1
where a, = Q,—'-—

Now it is possible to introduce the two-dimensional finite difference scheme. The finite

difference scheme applied at the interface is

n+l __ n n-1
b, = 2px.j - P,

— {ﬁ [bn'%.JP?H.J - (bt+%.1 + b'—%-l) p?, +bt—%'1p?—“]

+ [bz.j+{: (p?.j+l _p:l._z) _ bl-J—% (p?) _p?._]—l)] 2 }

a,,

Az Az; Az + Az
(5.25)
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where p. At. Az. and A: are the same as in Eq. (5.13). The additional variables are
a = 1/p,c; and b = 1/p,. p, being the ambient density for each medium. As previously
stated. both a and b change depending on the location of the calculation. If the calculation
is made in air. ¢, = 343 m/s and p, = 1.21 kg/m>. and in water. ¢, = 1500 m/s and
po = 1000 kg/m>. However. at the interface a and b are theoretically complicated3 and
can be difficult to implement. depending on whether or not the interface line intersects
grid blocks or outlines them. Since the current interface will be grid block approximated
(the interface line does not intersect a grid block). the functions can be written simply as
a= %(aa,r + Quarer) and b = %(b,,,,. + byater)- This interface finite difference scheme is also
found in the Fortran code in Appendix B in the subroutine sochdiff2d.

It should be pointed out that. like the air/water scheme in Eq. (5.13), the interface
scheme in Eq. (5.25) allows for a nonuniform grid in the = direction. Although the interface
scheme is applied just at the interface. this allowance is incorporated just so that it has the

flexibility to be used anywhere on the computational grid.

5.2.4. Boundary conditions

Since the computational simulations are calculated on a finite domain. it is necessary to
update the grid points on the edges of the rectangle separate from the interior grid points:
these points cannot be calculated using the finite difference schemes since these schemes
require a 3-point stencil. Applying boundary conditions at the exterior grid points allows
them to be updated for the next time step.

For the computational simulations in this work. hard reflecting boundaries are imple-
mented wherever possible for simplicity. Hard reflecting boundaries cause the propagating
wave to reenter the computational domain where it physically should have exited: this type
of boundary condition should only be applied if the reflected waves do not interfere with
the region of interest in the domain. For this research the initial waveform is inserted in
the upper left-hand corner of the rectangle: the wave then propagates toward the lower
right-hand corner. Reflections off the left. top. and right sides do not interfere with the
simulations for the times of interest. Therefore, hard reflecting boundary conditions are
applied on these sides. At a rigid boundary, the normal velocity is zero: the use of the

linear version of Euler’s equation, pog—f’ + Vp =0, implies that Vp = 0. At the edge of the
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domain V = % on the left and right sides, and V = a‘% on the top. As an example using z.

dp _ p(z+Az)—p(z) _

Py s =0. (5.26)
which implies that p(z + Ar) = p(x) at the outermost grid points. Figure 5.3 shows an
example of where the theoretical rigid boundary lies. here on the left hand side of the

computational domain.

rigid
boundary
exterior l interior
.’/ o @
.7 @ o 1d poi
@ : grid points
L. j_47 £, ] &
o/l @ o

D
8

Figure 5.3: Illustration of rigid boundary on the left hand side of the
computational domain.

Thus. the following boundary conditions are applied:

left side of grid D1, = P2, (5.27a)
top of grld DPizmar = Pizmaz-1 (5276)
right side of grid Pzmaz., = Prmar—1.) - (5.27¢)

where rmaz and :maz are the total number of grid points in the z and = directions.
respectively.

The bottom of the computational domain requires special consideration. The sound
speed in water is 1.4 times that in air, and false reflections from a rigid bottom boundary
would interfere with the present analysis of the sound levels at the interface. Two possible
solutions to avoid this interference are: first. to extend the domain by a factor of 4.4 below
the water surface or second. to implement an absorbing boundary on the bottom of the

domain. The latter was chosen in order to make the program more efficient.
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The absorbing boundary condition applied at the bottom of the domain is one taken
from Sparrow and Raspet.®® The actual boundary condition from Ref. 61 used in the

program is labeled the Bayliss-Turkel B, condition.

dp 1 0
—_— = - —_ JR— 9
3t Co (r + Br) D. (5.28)

which is the outgoing part of the spherical wave equation. The goal is to let this outgoing
part go to zero. For the Cartesian coordinates used in this research. the boundary condition

is written

0] 1 a a
Ep = —C, (\/-TT; + cos OZ + Sinéaz) p - (5.29)
The discretized version of Eq. (5.29) takes the form
ntl _ _ Cot no_ CoAL By sin® o A _ o
P = (1 W) P” Az (% o (p‘“'J p”) ’ (5-30)

where z. z. and © can be seen in Fig. 5.4. The bottom boundary condition can then be

implemented as p,; equated to Eq. (5.30).

interface —»

{2

A point of
calculation

Figure 5.4: Illustration of variables used to calculate the bottom bound-
ary condition.

All boundary conditions for the two-dimensional simulation are found in the Fortran

code in Appendix B.
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5.2.5. Stability of total finite difference method

The accuracy of a finite difference approximation is associated with two different errors.
the discretization error and the rounding error.®® The first error is introduced by the
grid spacing: the exact solution pp to the discretized equation is an approximation to the
exact solution of the original differential equation for p. The associated error is called the
discretization error zp (= p—pp). The second error is introduced by round-off errors in the
numerical solution: the difference between the exact solution to the discretized equation pp
and the numerical solution py is called the rounding error g (= pp — py) (can be called
stability error). The total error of the finite difference sclution is then the sum of these two

errors. £ = £p + £g. If the total error = is controlled the finite difference formulation can

(s

remain stable and sufficiently simulate actual wave propagation.

For a finite difference solution to be numerically stable. the time step At must be smaller
than the time it takes an acoustic wave to traverse one grid cell in the computational grid.3°
The finite difference approximation of the acoustic wave equation is conditionally stable: if
certain stability requirements are satisfied the formulation is stable. otherwise it is unstable.
The condition under which a scheme is stable is known as the Courant-Friedrichs-Lewy or
CFL condition.*® For example. the CFL condition for a one-dimensional finite difference
formulation of the wave equation is

Co\t
Ar

<1. (5.31)

where c¢,, At. and Ar are the same as previously defined. The ratio C'_'\";' is labeled the
Courant number.

Since, for this work, all of the computational domain except for the area representing the
air-water interface uses the air/water finite difference scheme. Eq. (5.13). it is appropriate
to find the stability condition for this scheme. This stability condition will be applied
throughout the computational simulations. A classical method for determining the stability
of a finite difference scheme is a Von Neumann stability analysis: this method of analysis was
developed during World War II by Von Neumann and is based on a Fourier representation

of the error distribution.?®3® A Von Neumann stability analysis will now be performed on

Eq. (5.13). This analysis uses Refs. 1. 25. 30. and 50 as guides.
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Because every time step in a simulation involves calculations including all computational
domain parameters. the CFL number must include the most extreme case variables to insure
stability. For this reason c, is set to be 1500 m/s and Az = 0.25 m. Since only one Az is

being applied in the analysis. Eq. (5.13) can be written

n+1

b, = QP?J —P:I.;_l ta; <p:l+l.; - 2p:] +p:1-1-1) +a: (p?-J‘vl - QP:J +P:]_[) - (5:32)

where

CoAL\? CoAL\? e
az_(!_\a:) Q:_—<A:) . (5.33)

An arbitrary error distribution can be represented by the Fourier series

Irmar :max

Smn (2.28) = ) D" A (t)erreT (5.34)

m=0 n=0

where K, and k. are the wavenumbers in the r and z directions. respectively. Since the error
amplitudes A4,,, are arbitrary. each term must propagate in time with decreasing amplitude
for the solution to be stable: in order to demonstrate this stability, it is sufficient to examine
individually the propagation of each term in the expansion. Upon substituting an individual
error term into the finite difference formulation, Eq. (5.32). it is possible to determine the

CFL condition. Letting the error amplitude A4 equal e'. we seek a solution of the form
s(z. 2 t) = eltetheierhss (5.35)

Substituting Eq. (5.35) into Eq. (5.32) gives

ei(t+Al)exk,:exk=: — 2eltezk,ze:k=: _ el(t—At)exk,rexk::
+a, (eltexk,(z-{»_\.r)exkx- Qeltetkezpthes | olt gtke(z~Az) gikez ) (5.36)
+a- (eltenk,zezk,(:+A:) Qeltetkstothes 4 oltg xk,zexk,(:—A:))

Dividing Eq. (5.36) by e'te**<Te'*:* then yields

k.Ar -tk Ar k. Az —thk. Az
; - et £ e ekedz 4 pmth:Az
e"\'=2—eu‘+2az< —1>+2a:<

. . —1). (5.37)

Applying the trigonometric formula cos¢ = % to Eq. (5.37) gives

e =2~ e 420, (cosk; Az — 1) + 2a, (cosk.Az — 1) . (5.38)
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Letting G = e'*. multiplying Eq. (5.38) by G, and applying the trigonometric formula

sino = %( 1 ~ cos29) yields the quadratic equation
G*+vG+1=0. (5.39)

where G is the amplification factor. and

5 (kA o (kAz
v = =2+ da, sin” ( 5 I) + da. sin” <'—;3—) . (5.40)

The solution to Eq. (5.39) is
1 | i .
G=-gv&5(v"-4)° . (5.41)
Stability is assured if both roots satisfy the condition |G| < 1. where the amplitude of any

error harmonic does not grow in time. Using the positive root. this leads to
slroptar — <o, (5.42)

which. after substituting in Eq. {(5.40). becomes

kx‘/Al') + a, sin® (k;A:) <1. (5.13)

Since the maximum value of sin*(%22) or sinz(ﬁi;\—:) is 1. it is implied that a; + a. < 1.

. D
Q. sin” (

o

o [, ~

This will be satisfied if

1 1 -
ay < 3 and a. < 3 (5.44)
which become the CFL conditions
oA\ 1 A\ 1
< - - 5.4°f
( ~ ) <5 and ( - ) <3 (5.45)
that yield
1 Az 1 Az
At < — d At < — . .-
SN an At < B (5.46)

It should be noted that Sochacki. et al.>® give the same CFL condition as Eq. (5.45) for their
finite difference scheme; therefore. even though Eq. (5.45) was derived from the air/water
finite difference scheme, it also applies to the interface scheme.

As previously stated. in order to calculate a At which would allow stable calculations
over the entire computational domain, the smallest spatial increment and largest speed of

sound must be employed. The calculated time increment in seconds is

1Az 1 0.25
At= ——" = — " x1.1785 - 4
V3¢, v21500 x 10 (5-47)

This time increment is calculated and used in the two-dimensional simulations: again, the

Fortran code can be found in Appendix B.
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Chapter 6.

Homogeneous Ocean with Flat Surface:
Computational Simulations

A stable finite difference code has been developed which has the ability to propagate a
wave going from air into water. Before adding realistic features to the ocean, the computer
program is run for the case of a homogeneous ocean with a flat surface; these are the
conditions under which previous studies have been done. Through a set of runs. it is
possible to make comparisons to the results of Cook.'? Sawyers.”® and Sparrow.*® all their

studies concerning a sonic boom interacting with a flat homogeneous ocean.

6.1. Computer Program

As mentioned in Chapter 5. there are many different variables to consider when imple-
menting the wave propagation simulations: these include the computational variables and
the physical variables. The computational variables have already been stated: grid param-
eters were assigned specific values, and the boundaries of the grid have been defined. The
physical parameters—sonic boom parameters and ocean parameters—are chosen according
to the desired simulation and are inputs to the computer program. Refer to Appendix B

for an example of the input file.

6.1.1. Physical parameters: sonic boom

The waveform which propagates in these simulations is a rounded N-shaped sonic boom.
As was explained in Chapter 2. realistic sonic booms vary in shape; the rounded N-shaped
waveform was chosen for its lack of sharp discontinuities that a perfect N wave would
possess. A perfect N wave would require a computationally intensive simulation, possibly
using a very fine grid. The issue of a more N-like waveform being used in the simulations

is addressed in Chapter 9.
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The rounded sonic boom is calculated by multiplying a straight-line function by an

appropriate window. The straight-line function is simply

line (z. z) = p,,mké . (6.1)
where [ |
Clz.2) =z {cos [sin'l (\L[)J }I ’ (6.2)

The variable ¢ (appears as const in Fortran code) is the physical position on the grid: Ppeak
is the peak pressure of the sonic boom. c is the speed of sound in air. 7 is half the duration
of the sonic boom. and M is the Mach number. The multiplier is a Hanning window. also

seen in the Appendix B Fortran code as the function w.

. oy O.5+O.5cos§§ €] < e )
window (r.z) = { 0 K| > er (6.3)
The initial pressure p,n, is then
Pinae (2. 2) = 1.5 (line) x 2.5 (window) . (6.4)

The initial pressure is calculated at two times since the time derivative used in the finite
difference schemes requires a 3-point stencil. In the simulation code in Appendix B these
initial pressures appear as p (p}')) and ptmp2 (p:'_J‘l).

The straight line. Hanning window. and the resulting rounded N wave appear in Fig. 6.1.

Figure 6.1: The rounded sonic boom waveform and the functions used
to construct it. These are plots of pressure as a function of space.

The sonic boom has a specified peak pressure, duration. and angle of incidence which,
as previously mentioned. is a function of the Mach number. These values are specified for

each run.
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6.1.2. Physical parameters: ocean

Two ocean parameters are options in the simulations: the ocean surface profile and
the ocean (in)homogeneity. For the ocean surface profile. the choices are flat or curved.
the curvature discussed in detail in the following chapter. The flat surface profile is chosen
for this chapter’s simulations. The ocean can contain ocean bubble layers near the surface:
this is not an option chosen for this chapter’s simulations. but will be discussed in detail in

Chapter 8.

6.1.3. Initial conditions

A rounded N-shaped sonic boom waveform is inserted in the upper left corner of the
computational domain. This sonic boom then propagates toward the lower right corner:
during its progression it is interrupted by the air-water interface. For all the simulations
in this chapter. the peak pressure of the sonic boom is set to be 50 Pa and the duration to
be 300 ms. These values correspond to a hypothetical HSCT® in steady. level flight (peak
pressure chosen from typical sonic booms under these conditions®). Several different Mach
numbers are used to find trends in the simulations with a flat homogeneous ocean.

Figure 6.2 shows the pressure field for the initial condition for two cases. Mach 1.4 and
Mach 2.4: here the dark band is the positive pressure in the waveform. and the light band
is the negative pressure. The text above the graphics will be explained in Sect. 6.3. Part
(a) of Fig. 6.2 shows the full computational domain for the Mach 1.4 case and part (b) of
Fig. 6.2 shows the full domain for the Mach 2.4 case. The white horizontal line represents
the air-water interface: the vertical axis. the z direction. is divided by this interface. 340
meters in the air. the rest in water. The horizontal axis is simply the distance in meters in
the z direction. Also shown. in Fig. 6.3 (the next figure). is a horizontal slice of the pressure
field for the Mach 1.4 case. part (a) of Fig. 6.2: the rounded sonic boom waveform is seen

to have a peak pressure of approximately 50 Pa.
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pressure; M=1.4, wh=0.0 m; #0 pressure; M=2.4, wh=0.0 m; #0

- 340 4 - 340

=(m)

(m) z(m)

-120 -60 O 60 120 -120 -60 0 60 120
a) pressure (Pa) b)  pressure (Pa)

Figure 6.2: Initial pulse in full computational domain. wave height 0.0
m: (a) Mach 1.4; (b) Mach 2.4.

6.2. Program Runs

All runs of the simulation program used for this chapter and the remaining chapters
were made on a Digital Equipment Corp. Alpha 3000/600 workstation, and each simulation
took approximately 2.5 to 10 hours of run time (for the program in its final form), depending
on the user load and the accuracy of the code. The user part of the CPU time (CPU time
used by the process outside of system calls) for each 2nd-order accurate simulation takes

on average about 2:35:47 (hours:minutes:seconds).

For the calculations in this chapter only one parameter is varied, the Mach number.
since the peak pressure and duration of the sonic boom have already been set, and the ocean

is homogeneous (no bubbles) with a flat surface (ocean wave height = 0.0 m). The Mach
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pressure (Pa)
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T
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Figure 6.3: Initial pulse. horizontal slice of Mach 1.4 pressure field.

numbers used in these calculations are 1.4, 2.4. 3.0. 3.5. and 4.5. the order corresponding

to decreasing angle of incidence.

6.3. Full-Field Pressure Results

An example of the pressure field over the entire computational domain at a time when
the sonic boom is interacting with the ocean surface is seen in Fig. 6.4; this snapshot in
time is taken from the Mach 2.4 simulation. The text on top of the graphic identifies the
particular run: this will appear in all full domain plots in this dissertation. Here wh stands
for wave height. and the number following the symbol # identifies the snapshot. During the
calculations. the values for the full domain plot are written out every 40 time steps, and,
as was previously described in Chapter 5, Sect. 5.2.5, At =~ 1.1785 x 10~*. Using Fig. 6.4
as an example, #160 = t = At x 40 x 160 = 0.75 seconds.
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It should be noted that when viewing Fig. 6.4 and the remaining full-domain graphics in
this dissertation. the plot is stretched in the region corresponding to the refined grid region
in the computational domain. As previously mentioned, the refined region extends 3 m both
above and below the mid-line of the air-water interface. The figures show every grid point
as a pixel, so the 6 m of the refined region is shown as 24 m in height. In other words. the
unrefined 1 m height computational grid blocks still correspond to 1 m in the figures, but
the refined 0.25 m height grid blocks now also correspond to 1 m. Also, the graphics show
dashed white lines which outline the refined grid region and a black box which outlines a
region of the full computational domain from where all results will be extracted: the box
would vary slightly with each different Mach number simulation. but the one shown gives a
good example of where the significant information resides. The part of the domain outside
the box is obviously affected by the chosen initial and boundary conditions. and the results
there are not usable.

In Fig. 6.4 the sonic boom is shown to not only reflect from the surface of the ocean but
also to penetrate into the ocean as an evanescent wave. Admittedly. it is difficult to look
at this figure and say for sure that the underwater pressure field represents an evanescent
wave. but it can be assumed that a sonic boom propagating into the ocean would look more
like the incident and reflected waves and not what is seen under water here.

Many palettes are available to view the numerical data. Later in this dissertation a
blue/red/yellow palette will be introduced (red for positive pressure. blue for negative pres-
sure. and yellow for high amplitude pressure): it will be apparent then why that color palette
is advantageous. but for this chapter a gray scale palette is sufficient. For the computa-
tional simulations. the inverted gray scale is preferred because of the clear, nondistracting
display of the pressure field: however, to have a better understanding of the extent of the
underwater pressure field. a banded gray scale is applied in this section of the chapter.
As previously seen. the Fig. 6.4 graphic applies an inverted gray scale palette. Now that
same graphic will be displayed using a banded gray scale palette: refer to Fig. 6.5. Here the
evanescent field is somewhat more clear than in Fig. 6.4. bands of gray forming semi-circular
shapes descending from each peak of the sonic boom waveform. To more fully visualize the

underwater sound field it would also be highly beneficial to see the intensity field.
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Figure 6.4: Mach number 2.4, wave height 0.0 m; incident wave interact-
ing with the air-water interface. (Inverted gray scale)
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Figure 6.5: Mach number 2.4, wave height 0.0 m: incident wave interact-
ing with the air-water interface. (Banded gray scale)
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6.4. Incorporating Acoustic Intensity

6.4.1. Equations used to calculate intensity

Calculating the acoustic intensity in addition to the pressure enables an accurate in-
terpretation of the computational simulation results. In order to visualize the power flow
through a point the instantaneous intensity should be calculated. The instantaneous inten-

sity I which is a function of time is expressed as
[(r.t) =Re{p(r.t)}-Re{i(r.t)} . (6.5)

where p is pressure. ¥ is velocity, r is a spatial variable. and ¢ is the time at which the
instantaneous velocity is calculated.

Instead of keeping track of the velocity in the r and z directions throughout the cal-
culations then calculating the intensity, it would be more efficient to calculate the intensity
directly from the pressure. This can be achieved by using the formulation for a sound
intensity probe, an experimental instrument that measures pressure at two points (two
transducers) separated by a small distance. allowing the calculation of the intensity using
the pressure information. The formulation applied to the intensity probe calculations is fol-
lowed here where pressure values at two consecutive computational grid points separated by
a small grid spacing is considered equivalent to the two transducer measurements separated
by a small distance.

A brief derivation for intensity in terms of pressure. following that in Ref. 18. begins

with Euler’s equation. In its one-dimensional form it is written as

Ip(t) _ du(t)
T = —PoT . (6.6)

Remember that p, is the ambient density. Also £ is an arbitrary spatial direction: the
horizontal and vertical components of the intensity will have to be calculated separately on

the rectangular computational grid. Solving for velocity. Eq. (6.6) becomes

v (t) = -p—lo /_ ; (a;;(;)) dr . (6.7)
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where 7 is here simply a dummy time variable. It should be noted that the integration
involves all times prior to the one of interest. Realistically. sound field information becomes
available at some initial time (¢ = 0), so ~oc can be replaced by 0. Now using a finite

difference approximation for the spatial derivative, ag—(;) = B2k Eq. (6.7) is written

[ ) =patriar (6.3)

Pod
where d is the distance separating p,, the pressure at location £, and p,, the pressure at

location £ +d. Equation (6.8) gives the velocity at the location £ + %; when calculating the

intensity it is then necessary to use the pressure also at the location £ + g,
d Pi + D2
o(er)~Bie cs)

Now substituting Eqs. (6.8) and (6.9) into Eq. (6.5). one component of the instantaneous

intensity can be written

I (6) = 2/)% o1 (£) + pa (£)] /0‘ b1 (7) = po (7)] d7 . (6.10)

Equation (6.10) is written into the computer code with a summation approximating the

integration as

I (t) ~—Lm )+ P2 (0] (o (1) = pa (7)] - (6.11)

r=0
where the sum accumulates starting from the initial waveform. In Eq. (6.11) £ is z or z. and
d is Az or Az. The instantaneous intensity is then plotted using its horizontal component
I and its vertical component /.. The computer code for these intensity calculations is

found in Appendix B as subroutine intensity.
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6.4.2. Runs with intensity

Having the ability to calculate the intensity field. Fig. 6.4 can now be shown with the
intensity vectors superimposed: refer to Fig. 6.6, where the inverted gray scale is applied
so as not to distract from the intensity vectors. Here the speed of sound in the air is 343
m/s and the speed of sound in the ocean is 1500 m/s. representing realistic parameters for
each medium (assuming a homogeneous ocean). The incoming waveform is represented by
vectors pointing down and to the right and the reflected waveform is represented by vectors
pointing up and to the right. Just under the ocean surface. it is seen that two sets of arrows.
one for each peak of the sonic boom waveform, each form a scoop shape which decays with
depth: this represents the evanescent wave caused by the impinging sonic boom. It should
be noted that the intensity amplitude in the air is actually much greater than in the water:
in order to even see any vectors in the ocean, the intensity vectors in that area of the domain
are greatly magnified. Also. the density of the air intensity vectors is less than for the ocean
vectors simply because it is more clear to see the incoming and reflected waves with fewer

arrows.

As a comparison to Fig. 6.6 which illustrates the evanescent wave. Fig. 6.7 shows a
propagating wave. Here the speed of sound in air is still 343 m/s. but the speed of sound
in the liquid is unrealistically set to be 654 m/s throughout. According to Snell’s Law.
Eq. (2.2). for the Mach 2.4 case (incident angle is 21.6°) there should be a propagating
wave traveling at an angle of 52.5° from the vertical into the water. Figure 6.7 depicts this
scenario; the vectors in the propagating wave are all seen to be pointing down and to the
right as is the case for the incident wave. Taking the horizontal and vertical components of
the intensity vectors in the underwater propagating wave. the refracted angle 6, is calculated

to be 52.6° (6, = tan~!( f{-)). an angle which approximates that calculated using Snell’s Law.

Another case where the incident wave should propagate into the water is when. using
the realistic ocean sound speed (for a homogeneous ocean). the angle of incidence is less
than the critical angle. 13.2°: this angle corresponds to a Mach number of approximately
4.4. Therefore. if the simulation is run with a Mach number of 4.5, a propagating wave
should be seen underwater. Figure 6.8 shows the Mach 4.5 case; as in Fig. 6.7, the Mach 4.5

illustration depicts the propagating wave scenario. This propagating wave is seen more with
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Figure 6.6: Mach number 2.4, wave height 0.0 m: incident wave interact-
ing with the air-water interface; pressure and intensity fields for c,;, = 343
m/s and Cyeean = 1500 m/s.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



e

pressure and intensity; M=2.4; wh=0.0 m; #160; not real c _
0

- 340

z(m)

0 200 400 600
z(m)

-120 -60 0 60 120
pressure (Pa)

Figure 6.7: Mach number 2.4, wave height 0.0 m: incident wave interact-
ing with the air-liquid interface; pressure and intensity fields for cg;, = 343
m/s and ¢jquiq = 654 m/s.
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Figure 6.8: Mach number 4.5, wave height 0.0 m; incident wave interact-
ing with the air-water interface; pressure and intensity fields for c,,, = 343
m/s and Cpeean = 1500 m/s.
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the positive peak of the sonic boom waveform: because the Mach 4.5 case would require a
much wider domain in order to see the whole sonic boom waveform as a fully developed
propagating wave, Fig. 6.8 (which uses the same size domain as the other simulations)
illustrates the beginnings of a propagating wave, the negative part of the waveform not
fully developed.

Not only do the figures with intensity vectors help in the understanding of the under-
water sound field. but the cases used to illustrate a propagating wave serve as a reality
check. The computer code correctly calculates a propagating wave where physics demands

a propagating wave and an evanescent wave when appropriate.

6.5. Comparison of Results to Previous Theories

The analytical theories of Sawyers,”® Cook.!? and Sparrow® assume a flat water inter-
face. The finite difference simulation results for the flat ocean surface can be qualitatively
compared with these analytical theories. Although the finite difference simulations use a
rounded sonic boom waveform and the analytical theories assume a perfectly N-shaped

waveform. the finite difference results are similar to those predicted analytically.

6.5.1. Comparison to theories of Sawyers and Cook: decay in pressure

When the sonic boom interacts with the ocean surface. an evanescent wave is produced
under water; this evanescent wave is analytically predicted by Sawyers®® and Cook!® as
explained in Chapter 3. Figure 6.6 shows the evanescent wave, but it would also be useful
to see the decay of the actual sonic boom waveform. Line graphs extracted at various
depths below the surface illustrate the decaying waveform as described by both Sawyers
and Cook. Figure 6.9 shows a horizontal line intersection of the full domain just under the
ocean surface and at 10, 25. and 50 m under water. The pressure amplitude just under the
ocean surface is approximately 100 Pa due to pressure doubling at the air-water interface.
Figure 6.9 shows that the amplitude of the penetrating wave decays as a function of depth
and is comparable to Fig. 3.1. the illustration of a decaying waveform calculated using

Sawyers’ theory.
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Figure 6.9: Mach number 1.4, wave height 0.0 m: horizontal line intersec-
tion of waveform just under the ocean surface and 10, 25. and 50 m under
water.

Although the decaying waveform calculated using Sawyers’ theory starts (at the surface)
as a perfect N wave and the decaying waveform in the flat water simulations starts as a
rounded sonic boom. a comparison can be made of the two decaying waveforms. Figure 6.10
shows each waveform on the same scale just under the ocean surface and at depths of 10, 25,
and 50 m; Part (a) is the analytical N wave and Part (b) is the computationally calculated
rounded sonic boom. It is seen that both waveforms decay at approximately the same rate,
the N wave losing its sharpness and looking more like the rounded waveform. Figure 6.11
includes each 25 meter-depth waveform: the analytical waveform has been shifted to the
left for a direct comparison. Figure 6.11 reiterates that the waveforms have decayed at
approximately the same rate, the peaks quite close in amplitude. It is concluded that. in

fact, the flat water simulations approximate well the analytical work of Sawyers and Cook
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who predict that a sonic boom related to a Mach speed less than 4.4 impinging upon a

flat-surfaced homogeneous ocean cause an underwater evanescent wave.

6.5.2. Comparison to theories of Sawyers and Cook: decay in sound level

The flat ocean surface results are now converted into sound levels and the decrease in
decibels with depth are compared to the results presented in Chapter 4 and the results
in Sparrow and Ferguson.®® Each of these results are produced using a numerical method

based on one of the known analytical theories.

6.5.2.1. Comparison to sound level decay table in Chapter 4

Chapter 4 presented several sound level calculations including the peak sound pressure
level. Table 4.2 listed the decrease in sound level from the ocean surface as a function of
depth. The pressure values used to produce these sound levels were numerically calculated
using the theory of Sawyers.’® as explained in Chapter 4. In order to compare the com-
putational simulations of Chapter 6 with the values listed in that table, the peak pressure
results calculated with the simulations had to be converted to sound level. After calculating
the peak pressure sound level. a list similar to that in Table 4.2 of sound level decay as a
function of depth is constructed.

Table 6.1 contains the decay in decibels as a function of depth calculated using both
the computational model and the analytical model. (The model actually uses numerical
methods based on analytical theories. but it will be referred to here simply as the analytical
model.) Also, the difference between these two (jcomputational| — |analytical|) is shown.
Recall that for the analytical method of Chapter 4. a perfectly symmetric N wave is inserted;
when calculating the peak pressure sound level, either the positive or negative peak can be
chosen since they have the same magnitude, and hence one decibel value for each depth is
found. The simulations in Chapter 6 involved a rounded N wave as the initial sonic boom
waveform: just under the ocean surface and below, the peak pressures of the waveform do
not have the same magnitude. To get one number for decay in decibels at a particular
depth the sound levels associated with the positive and negative peaks are averaged, and

the average decay is shown as a function of depth.
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Figure 6.10: Sonic boom waveform just under the ocean surface and 10,
25, and 50 m under water. Part (a) analytical method: Part (b) computa-
tional method.
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Figure 6.11: Sonic boom waveform at a depth of 25 m under water. Solid
line, analytical method: dashed line. computational method.

Table 6.1: Decibel levels as a function of depth relative to those at the
surface: a comparison of the computational model to the analytical model
of Chapter {. Flat homogeneous ocean.

depth | computational method |analytical method dB difference

(m) (dB) (dB) |comp| — |analytical]
0 0.0 0.0 0.0

4 -0.8 -20 -1.2

8 -1.6 -3.0 —-14

16 -3.1 —-4.6 -1.5

32 -6.1 -7.2 -1.1

64 -11.3 —-11.6 -0.3

128 -19.4 -184 -1.0

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



79

The computational method is seen to decay more slowly near the surface and more
quickly at greater depths than the analytical method. The largest difference in sound level,
-1.5 dB, is at a depth of 16 m. This is not a great amount since the threshold of detecting
an amplitude change for most people is 3 dB. The remaining differences are less than 1.5
dB in magnitude. So. although there is a notable difference. the underwater decay rate of
the evanescent field due to a sonic boom is approximately the same for the computational

simulations as for the analytical solutions.

6.5.2.2. Comparison to sound level decay table in Sparrow and Ferguson

The method is based on the theory of Cook.!? In their work. a table was presented. labeled
Table 3. similar to Table 4.2 in this research. except with fewer depths represented. Their
theory also involved a perfectly symmetric N-shaped sonic boom with the same parameters
as have been used for most of the simulations in this work. (As in the last section, the model
actually uses numerical methods based on analytical theories, but again will be referred to
as the analytical model.)

Table 6.2 contains the decay in decibels as a function of depth calculated using both the
computational model and the analytical model. The values for the computational model
are the same as those in Table 6.1. Again. the computational method is seen to decay more
slowly near the surface and more quickly at greater depths than the analytical method. The
largest difference in sound level. -1.6 dB, is at a depth of 16 m. The same conclusions are

drawn as in the previous section.
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Table 6.2: Decibel levels as a function of depth relative to those at the
surface: a comparison of the computational model to the analytical model
in Ref. 60. Flat homogeneous ocean.

depth | computational method |analytical method dB difference
(m) (dB) (dB) |comp| — |analytical|
0 0.0 0.0 0.0
4 -0.8 -2.0 -1.2
16 -3.1 —4.7 —1.6
64 -11.3 —11.6 -0.3

6.5.3. Comparison to Sparrow’s conclusions

80

In order to see the relationship between Mach number and the underwater depth of the

penetrating sound. it is necessary to extract information from the flat water Mach 1.4, 2.4.

3.0. and 3.5 runs. Table 6.3 contains the numerical data (real pressure values) found at a

100 m depth for increasing Mach numbers. It is seen that for Mach 1.4 the evanescent wave

has decayed to about 5 percent of its value just under the ocean surface (100 Pa). However.

for Mach 3.5 the peak pressures in the waveform at a depth of 100 m are still 40 percent of

the value just under the surface. Hence. the numbers confirm Sparrow’s prediction® which

states that higher Mach number incident waves are associated with deeper penetration into

the ocean.

Table 6.3: Real pressure values found at 100 m depth for increasing Mach

numbers.

Mach number positive peak (p, Pa) negative peak (p, Pa)
14 4.19 -5.71
2.4 14.06 -15.98
3.0 21.71 -24.96
3.5 40.71 -38.20
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An explanation for this calculated trend goes back to Chapter 2. Section 2.3.4. where
the evanescent wave is first discussed. Included in the expression for the underwater pressure
field are 3, and 7). which are dependent on the incident angle of the incoming waveform
and hence on the Mach number. Changes in 7; , modify the pressure amplitude and changes
in 3, modify the exponential decay governed by e~(~/c2)(32)z_ Since 3, = [(ff)zsin2 6, — 1)1,
it is determined that as the Mach number increases. the incident angle 6, decreases (in the
range 0° to 90°); in turn. sin @, decreases and 3, decreases. This implies that the rate of
decay decreases with increasing Mach number. or higher Mach numbers are associated with

deeper penetration into the ocean.
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Chapter 7.

Homogeneous Wavy Ocean: Concepts and
Computational Simulations

[t was shown in Chapter 6 that computational simulations are possible for a sonic boom
impinging on a homogeneous ocean with a flat surface. The current chapter introduces the
first realistic ocean feature. a wavy ocean surface. Since the goal here is to find the effects
that just the curvature of the wavy ocean surface has on the incoming sonic boom. the
ocean remains homogeneous for this chapter’s simulations. Before describing the simula-
tions. ocean wave concepts will be discussed. specifically the topics of wind-generated waves
and sonic booms interacting with wind-generated waves. The computational simulations
presented here will include ocean waves being represented by a simple curved surface and
more complex curved surfaces. the surface profile shown for each case. Also. a wavelength
comparison will be made between the ocean waves and the horizontal effective wavelength

of the sonic boom waveform. and the effects due to the wavelength difference will be shown.

7.1. Ocean Wave Concepts

7.1.1. Wind-Generated waves

7.1.1.1. Wave generation

Although ocean waves can be caused by the passage of the moon or underwater earth-
quakes or landslides. among other things, the primary cause of waves is the wind.>2? As
the wind blows over the surface of the ocean, the frictional drag of the moving air against
the water creates ripples. Once a ripple has formed, there is a steep side against which the
wind presses directly. The energy is then transferred from air to water more effectively and

the small waves grow rapidly.?
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As the wind speed increases. and if it is of any significant duration, larger waves begin
to develop as the wave height builds up.** The ultimate state of wave growth depends
primarily on three parameters basic to wave forecasting: 1.) the wind velocity. 2.) the
duration of time the wind blows. and 3.) the fetch (the distance over open water across
which the wind blows).3** Eventually, the waves have absorbed as much energy as they
can from the wind of that velocity: energy is being dissipated by the waves at the same
rate as the waves receive energy from the wind. At this point the sea is said to be fully
developed.®*” A fully developed sea at any given time is very complex and defies precise
description.” Statistical methods can be used to describe the properties of these waves.

The significant wave height in a fully developed sea is the average height of the highest
one-third of all waves occurring in a particular time period. The Beaufort Scale (found in
Refs. 3. 7. and 22. among others) gives the relationship between sea state, significant wave
height. and wind speed and is used by mariners for estimating the wind speed from the sea
state. An example entry in the scale reads: at a sea state of 5. the wind can be described as
a fresh breeze. the wind velocity is from 17-21 knots (kn) or 8.0-10.7 m/s. many white caps
have formed. and the significant wave height is about 1.2-2.4 meters. The scale can be used
in this work to help pick related wind speeds and wave heights and to help determine which
wind speeds are associated with breaking waves: the breaking wave issue will be discussed
more in the next chapter.

Wind waves leaving the generating area or continuing on after the generating wind has
ceased are termed swell. Swell are more rounded and symmetrical than waves in the fully
developed sea, their form approaching that of a true sine curve. They move in groups of
similar period and height and can travel thousands of miles across deep water before being
completely diminished by air resistance, turbulence. dispersion, and lateral spreading.322
The conceptual development of wind-generated ocean waves is shown in Fig. 7.1: this figure

is adapted from illustrations in Refs. 3 and 22.
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Figure 7.1: Conceptual development of wind-generated ocean waves. Top
down view.

7.1.1.2. Analytical description of waves

Since swell cover such an extensive area, these are the type of ocean waves which are
considered to be most important to the research. Swell can be approximated analytically

by a sinusoidal profile. The expression for this sinusoidal profile is
n(z) = Acoskzr . (7.1)

where z is the horizontal distance. n is the vertical displacement of the water surface from
the mean water level. A is the amplitude of the ocean wave. & = ’[ is the ocean wave
number, and L is the wavelength of the ocean wave. The wave height H, significant to
the simulations. is defined as the vertical distance between the crest and successive trough
of the ocean wave: the amplitude A is half the wave height. Another parameter is the
steepness which is the wave height over the wavelength (H/L): wave steepness observed at
sea is normally between 1/17 and 1/33. the steeper waves corresponding to higher wind
speeds. In this research, the steepness is fixed at 1/20 (or L = 20 x H), a common ocean
engineering approximation.”> The sinusoidal profile is seen in Fig. 7.2; also shown in the
figure are the ocean wave parameters.

Although the sinusoidal surface is a fair approximation for describing swell, the steeper

the waves become, the more the surface resembles a trochoidal curve.” Using a trochoid
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Figure 7.2: Sinusoidal ocean surface profile with wave parameters.

to represent the ocean swell was first established by Stokes®® and improved by Rayleigh.'8
Stokes’ waves form a trochoidal profile where the crests are steeper and the troughs are
fatter: this representation more realistically describes observed ocean waves.?? A third-

order expression for a Stokes’ wave is provided in Refs. 22 and 31:
1 95 3 2 3
n(r) = —4coskzr + skA‘ cos 2k — gk'A cos3kzx . (7.2)

where the variables are the same as in Eq. (7.1). Figure 7.3 shows the trochoidal profile.

N NN

Figure 7.3: Trochoidal ocean surface profile.

Besides the swell. profiles can be formulated for waves in a fully developed sea. The
most realistic formulation involves statistically generated surfaces. Due to computational
limitations these surfaces are not actually used in any of the final result simulations; nu-
merical instabilities could not be eliminated for their general use, even after minimizing the
number of frequency components. Refer to Appendix C for a formulation of a statistically

generated surface profile.
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Instead of implementing the statistically generated surface profile. two profiles more
complex than a simple sinusoid or trochoid are applied. Each of the complex profiles
contains not only a trochoidal wave with a frequency equivalent to that used for the swell
but also a unique characteristic which represents a higher frequency component in the ocean

waves. The first complex profile is calculated using the equation
nir) = —%l coskx + élc.-l2 cos 2kz — %k"’A3 cos 3kx + (0.6494) A cos 2kzx . (7.3)
Again, the variables match those in Eq. (7.1). This profile is a trochoidal wave with a sine

wave of lower amplitude and half the wavelength superimposed. The shape of this surface

is seen in Fig. 7.1. The second complex profile is calculated using the equation

!

. K 1 2 R 2 2% . ’
n(z) = —% coskz + Sk (A") cos 2kx — gk' (A")? cos 3k + (0.3) A’ cos 3kz . (7.4)

where A’ = (1.2481) A. This profile is a trochoidal wave with a sine wave of lower amplitude
and one-third the wavelength superimposed. The shape of the second complex surface is
seen in Fig. 7.5. It should be noted that the amplitude adjustments in Eq. (7.3) and in

Eq. (7.1) are necessary to achieve an ocean wave with height equal to that which is input.

NANASN\~

Figure 7.4: First complex ocean surface profile: trochoid plus half wave-
length sinusoid.

W

Figure 7.5: Second complex ocean surface profile: trochoid plus one-third
wavelength sinusoid.
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7.1.2. Sonic booms interacting with wind-generated waves

It is important to look at the alignment of the propagation directions of a sonic boom
and wind-generated ocean waves. In studying this aspect. it is possible to determine whether
or not two dimensions sufficiently represent the problem at hand or if three dimensions are

necessary.

7.1.2.1. Sonic boom propagation aligned with ocean waves

It is first assumed that the horizontal component of the sonic boom propagation is
aligned with the wind-generated ocean waves' propagation direction: this can be restated
as the sonic boom propagation being perpendicular to each ocean wave front. Figure 7.6

illustrates this case.

\
\\
sonic boom
-V‘- —
waveform
>
MaCh’/
cone
ocean wave ocean wave
fronts fronts

Figure 7.6: Sonic boom propagation aligned with ocean waves' propaga-
tion direction. Top down view.

Taking a horizontal slice through Fig. 7.6 gives an adequate two-dimensional represen-
tation of the aligned case. This is true since any reflections of the sonic boom would stay
in the initial plane of propagation. In other words, using the law of mirrors, the angle of
reflection can be determined simply by setting it equal to the angle of incidence. Refer back
to Fig. 2.13 which shows the angle of incidence and the angle of reflection for a flat ocean

surface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



88

Finding the angle of reflection from a wavy ocean surface is somewhat more complicated
than for a flat surface. Figure 7.7 represents a horizontal cut through the middle of Fig. 7.6:
as you can see from the figure. it is necessary to determine the tangent line at a point on the

ocean surface in order to determine the true incident angle and thus the angle of reflection.

incoming
sonic boom
ocean
surface
e

Figure 7.7: Two-dimensional representation of sonic boom interacting
with a wavy ocean surface. Side view.

Figure 7.8: The angle which the tangent line sweeps from the horizontal.

The angle which the tangent line sweeps from the horizontal, as is seen in Fig. 7.8, can

be found using

0““ = tan—l m. (75)

where 6,,, is the tilt angle and m is the slope of the tangent line. If the function of the
ocean surface profile is known. the slope of the tangent line can be simply calculated by

taking the spatial derivative at any point r on the surface. So. Eq. (7.5) becomes

an
By = tan™! — . .
talt an oz
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Figure 7.9: A single acoustic ray in air traced as it enters then exits the
ocean wave trough.

where 7 is the function of the ocean surface profile. Then the true incident angle §;, the
angle from the vertical to the line tangent to the surface curve at the point of reflection.
can be written as

0 =6, — b . (7-6)

where 6, is the incident angle measured from the vertical to a flat ocean surface.
Assuming a simple sinusoidal ocean surface profile, the tilt angle as a function of hori-
zontal distance is found as
- 3 i ls
, Osin (r£2)
ox
and the true incident angle in degrees can be calculated using
3 cin (130
_,; Osin (.L‘-_—)
oz ’

This sinusoidal ocean profile will be used in the following demonstration.

A (x) = tan™

f;(r) =86, —tan

It is useful to trace rays going into the ocean wave trough in order to find out what
happens to the acoustic energy. To illustrate the ray tracing. it is most useful to find the

angle measured from the horizontal to the reflected ray. This angle fy can be written as
9[-{ (I) = 90° + Btllt - 9[ . (77)

Figure 7.9 shows a single ray traced as it enters then exits the ocean wave trough. The ray
reflects at three points: the angle 8 is shown for the second reflection. Equation (7.7) is
used to calculate each angle of reflection as seen from a horizontal intersection. Because of
the large acoustic impedance mismatch between air and water it can be assumed that each

reflection is essentially lossless.
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Figure 7.10: Multiple acoustic rays in air traced as they enter then exit
the ocean wave trough.

A sonic boom wavefront hitting the ocean surface can be visualized in air using several
rays. each representing a different point on the wavefront. Figure 7.10 shows multiple ray
paths as they enter then exit the ocean wave trough.

As is seen in Fig. 7.10. the rays intersect to form an area of concentrated acoustic
energy. It is this concentration which makes the aligned case the worst case scenario: worst

in that it has the greatest build-up of acoustic energy.

7.1.2.2. Sonic boom propagation not aligned with ocean waves

It is now assumed that the horizontal component of the sonic boom propagation is
not aligned with the wind-generated ocean waves' propagation direction: the sonic boom
propagation is not perpendicular to the ocean wave fronts. Figure 7.11 illustrates this case.

The ocean wave fronts shown in Fig. 7.11 are now shifted from the vertical by angle v.

The ocean surface profile in the misaligned case is the same as that in the aligned
case. So, using the ray tracing illustration, the angle of reflection is calculated in the same
manner. but now an out-of-plane sweep of angle ¢ is included. Since this problem cannot be
restricted to one plane. a three-dimensional representation is required. Figure 7.12 shows a
top view of the ocean surface with a single ray traced: this is just an illustration and does
not include accurate reflection points. What it does convey, however, is that the acoustic
energy is not trapped in the one plane. as with the aligned case: there is therefore less

concentration of energy in any single area.
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Figure 7.11: Sonic boom propagation not aligned with ocean waves’
propagation direction. Top down view.
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Figure 7.12: Top down view of the ocean surface with a single ray traced:
this illustration does not include accurate reflection points.

After analyzing the cases of sonic boom propagation being aligned and not aligned with
the ocean wave propagation direction, it is determined that the worst case scenario belongs
to the aligned case. In support of this, it has been recently reported that the strongest effect
occurs when the sonic boom propagation direction is normal to the ocean wavefronts:®° this
describes the aligned case. Since the interest lies in finding the strongest effect possible,
the aligned case is the one chosen for modeling; a two-dimensional simulation is sufficient
to study this aligned case. Going to a fully three-dimensional finite difference simulation is

therefore unnecessary.
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7.2. Homogeneous Ocean with a Simple Curved Surface: Computa-

tional Simulations

The first set of two-dimensional computational simulations for a wavy ocean surface
includes the two simple surface profiles. sinusoidal and trochoidal; these profiles represent
the ocean swell. A necessary addition to the computer code and the physical parameters
used in these simulations will be described. followed by the enumeration of specific program

runs and the presentation of their results.

7.2.1. Computer program

The same computer program that was used in Chapter 6 for the flat ocean surface
results is used here. With the addition of the wavy ocean surface, however. numerical
instabilities arise. Here the ocean surface curve is approximated by ragged grid blocks,
its path never entering a grid block but rather outlining it. So instead of a nice. smooth
surface. the profile resembles that shown in Fig. 7.13: this illustration does not give accurate
dimensions. and the raggedness is greatly exaggerated. Because the surface is not smooth
in the computational simulations. its “edges” sometimes cause the pressure calculations to

become numerically unstable resulting in undesirable exponential growth in the solutions.

Figure 7.13: Illustration of grid-block-approximated ocean surface cur-
vature.

Two steps are taken to control these instabilities: the first is the refined grid region
surrounding the air-water interface already existing in the code. This decreases the vertical
rise of the grid blocks, allowing a better approximation to a smooth surface. There are
still, however, problems with the calculations. Depending on the ocean wave height, the

crests and troughs of the ocean waves can create numerical instabilities. To avoid this
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problem. a function or filter is inserted into the Fortran code which “smooths™ any peak
or dip in the surface with a singular maximum or minimum grid point. “Smoothing” the
curve requires adjusting a singular extreme point to match the value of its neighboring grid
points. Figure 7.14 illustrates the application of the “smoothing™ filter. Once both of these
steps have been taken. the computational simulations for a sonic boom interacting with a

simple curved surface run without any numerical mishaps.

ﬁ

Figure 7.14: Illustration of the “smoothing™ filter applied to the ocean
surface curve.

7.2.1.1. Physical parameters

As in the flat ocean simulations. the ocean simulations with swell propagate a rounded
sonic boom waveform. The initial waveform inserted in the computational domain is the
same as in Chapter 6: the peak pressure of the sonic boom is 50 Pa and the duration 300
ms. The four Mach numbers used are 1.4. 2.4, 3.0. and 3.5.

The ocean surface profiles chosen to represent the swell are sinusoidal and trochoidal.
each being a simple curved surface. Please refer to Sect. 7.1.1.2 for the equations used
to calculate. and illustrations of. these surfaces: specifically Eq. (7.1) and Fig. 7.2 for the
sinusoid and Eq. (7.2) and Fig. 7.3 for the trochoid. The wave heights chosen are associated
with particular wind speeds. A plot in Ref. 3 shows two curves. one observed values and one
theoretical values. for wind speed in knots (kn) vs. wave height in meters. Four different
wind speeds and their corresponding wave heights are extracted from the observed wave
height curve; the results are shown in Table 7.1. These wind conditions are described as
calm (0 kn), gentle breeze (10 kn), fresh breeze (20 kn). and finally high wind (30 kn) in
the Beaufort Scale. As was mentioned, this scale is found in many references; although the

descriptions of the wind conditions and sea are similar. the wind speed and corresponding
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wave height values differ from one reference to another. It was decided to use the values
extracted from the plot in Ref. 3. given in Table 7.1, where most of the wave heights
correspond to those in the Beaufort Scale. What is most important here is implementing

several different wave heights to find their effect on an impinging sonic boom.

Table 7.1: Wind speeds and corresponding wave heights used in the
curved interface simulations.

wind speed (knots) ocean wave height (meters)
0 1.0
10 1.4
20 2.3
30 3.75

The air and the ocean are homogeneous for these simulations. In the air the speed of
sound ¢, is 343 m/s and the density p, is 1.21 kg/m?®. In the ocean ¢, = 1500 m/s and p, =
1000 kg/m3.

7.2.2. Program runs

The same computational parameters (grid spacing. number of grid points, ...) are used
in the curved surface simulations as were use in the flat surface simulations in Chapter 6.
For the calculations in this chapter three physical parameters are varied: the surface profile,
the Mach number. and the ocean wave height. The Mach 1.4 and 2.4 cases are run for each
of the four wave heights given in Table 7.1. Also run are the Mach 3.0 and 3.5 cases for
the largest wave height, 3.75 m. with only the trochoidal interface profile. To find out how
the curvature of a wavy ocean surface affects the impinging sonic boom waveform. the runs
mentioned in Chapter 6 for a flat ocean surface for the Mach 1.4, 2.4, 3.0, and 3.5 cases are
used for comparison. In all of this chapter’s simulations, the ocean waves are static: this
approximation is valid since the airplane speed far exceeds that of the ocean surface waves,

so to the airplane the surface waves appear to be standing still.?

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



95

7.2.3. Effects caused by a simple curved ocean surface

An example of the pressure field over the entire computational domain at a time when
the sonic boom is interacting with the wavy ocean surface (trochoidal profile) is seen in
Fig. 7.15; the case shown is Mach 2.4, wave height 3.75 m at a time t = 0.75 seconds. As
in Chapter 6. the dark band represents the positive peak of the sonic boom waveform and
the light band the negative peak. The white curvy line is the ocean surface, and the white
dashed lines enclose the refined grid region; as before. this graphic shows the refined region
stretched vertically by a factor of four.

A great deal can be learned from these simple curved surface simulations. It is possible
to look at the intensity vectors to visualize the power flow. to see how the curved interface
warps the initial waveform. to animate this simulation and watch where high pressure values
accumulate. and to extract underwater pressure values to see where and how much the sound

field is modified and which parameters govern the modifications.

7.2.3.1. Results with intensity vectors and qualitative description of effects

It is useful to start by viewing the intensity vectors in the water; Figure 7.16 shows
the same full-domain pressure field in Fig. 7.15 but now with the underwater intensity
vectors superimposed. The vectors are shown only from the bottom of the troughs down
and not in the peaks of the ocean waves: this is necessary in order to see any intensity
vectors in the ocean. As was stated earlier. the intensity values in the air far exceed any
in the ocean: when viewing a rectangular section (a limitation in the graphics), no air can
be included or the ocean vectors will be so overpowered that they will appear as dots not
arrows. Figure 7.16 reveals the underwater evanescent wave: this curved ocean surface.
like the flat ocean surface. does not allow an incident wave to penetrate the surface as a
propagating wave.

It is also useful to look at the intensity vectors in the air: Figure 7.17 shows the same
full-domain pressure field in Fig. 7.15 but now with the air intensity vectors superimposed.
Some of the ocean vectors are actually part of this graphic and appear as dots in the

peaks of the ocean waves. What can be learned from this plot is that there is a build-up
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Figure 7.15: Mach number 2.4, wave height 3.75 m, trochoidal surface
profile; incident wave interacting with the air-water interface. (Inverted
gray scale)
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Figure 7.16: Mach number 2.4, wave height 3.75 m. trochoidal surface
profile, pressure and underwater intensity fields; incident wave interacting
with the air-water interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



98

pressure and intensity; M=2.4; wh=3.75 m; #160

- 782

0 200 400 600
z(m)

-120 -60 0 60 120
pressure (Pa)

Figure 7.17: Mach number 2.4, wave height 3.75 m, trochoidal surface
profile, pressure and air intensity fields; incident wave interacting with the
air-water interface.
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in the troughs represented by the large arrows superimposed on the light area where the
negative peak of the incident wave interacts with the ocean surface. Also seen is a decrease
in intensity as the waveform travels over an ocean peak: this is represented by the small
arrows superimposed on the dark area where the positive peak of the incident wave interacts
with the ocean surface.

The underwater pressure values. which will be more closely scrutinized in the next
section. in general indicate that indeed there is a pressure build-up in the troughs which
is matched by this higher pressure amplitude just under the surface. This is termed here
a focusing effect. Also. the pressure values just under the ocean surface in the ocean wave
peaks are actually minimized by a defocusing effect. Figure 7.18 illustrates where these
focusing (which causes an increase in amplitude) and defocusing (which causes a decrease

in amplitude) effects occur.

incident incident
/ plane / plane

wave wave

N o .
focusing defocusing

Figure 7.18: Focusing and defocusing of a wave incident on an ocean
surface with swell. The shaded regions represent the regions of focusing
and defocusing. This picture is not intended to illustrate a sonic boom
interacting with the ocean surface, but rather just to show where focusing
and defocusing occurs.

In addition to studying the snapshots in time, an animation of the Mach 2.4/wave

height 3.75 m/trochoidal interface profile simulated data was created as a research tool.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



100

Observing this animation. it was seen that the positive and negative peaks of the rounded
sonic boom waveform just above the ocean surface increased (in magnitude) in the troughs
of the ocean waves and decreased (in magnitude) over the ocean wave crests. The highest
pressure values were located near the bottom of the trough and up the right-hand side slope
of the trough. Recall that the airborne sonic boom is traveling from left to right over the
ocean surface.

This animation was actually created in color, not in gray scale. A blue/red/yellow
color palette represents the pressure values. Blue is for negative pressure. red for positive
pressure, and yellow for high amplitude pressures. either positive or negative. Yellow bands
are used to highlight the pressure amplitudes which exceed approximately 96.5 Pa. Three
chronological snapshots of the animation are now shown to give the reader some indication
of the previously described observations and the enhanced meaning of the pressure field by
applyving the blue/red/yellow color palette. Figure 7.19 is 0.75 seconds into the animation.
the snapshot shown in the previous figures of this section: it shows the negative peak of
the sonic boom waveform having a large pressure amplitude in a trough of the ocean waves
and the positive peak not reaching any high amplitude pressure values when it is stretched
over an ocean wave crest. Figure 7.20 is at time t = 0.77 s: here, the negative peak of the
sonic boom waveform is leaving an ocean wave trough. and the positive peak is entering
one. the negative peak decreasing in pressure amplitude and the positive peak increasing.
Figure 7.21 is at time ¢ = 0.79 s: this last graphic shows a high pressure amplitude for
the positive peak which is fully in an ocean wave trough and the absence of high pressure
amplitudes for the negative sonic boom waveform peak which is now stretched over an ocean

wave crest.

7.2.3.2. Quantitative description of effects

The first quantitative look at the simulated data involves pressure values just under
the ocean surface. Varying the Mach number. ocean wave height. and ocean surface profile,
trends are noticed in the effects of the ocean curvature on the impinging waveform.

For each simulation, five to ten snapshots in time are evaluated, the number of times
dependent on ocean wave height. Over the time it takes for the sonic boom to finish

interacting with the ocean. the positive and negative peaks of the waveform have each
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Figure 7.19: Mach number 2.4, wave height 3.75 m. trochoidal surface
profile, pressure field, blue/red/yellow color palette; snapshot of animation
at time £t = 0.75 s.
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Figure 7.20: Mach number 2.4, wave height 3.75 m, trochoidal surface
profile, pressure field, blue/red/yellow color palette; snapshot of animation
at time t = 0.77 s.
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Figure 7.21: Mach number 2.4, wave height 3.75 m, trochoidal surface
profile, pressure field, blue/red/yellow color palette; snapshot of animation
at time £ = 0.79 s.
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interacted with several crests and troughs of the ocean surface swell. The times chosen for
evaluation span a period which includes the time it takes for the sonic boom waveform to
sweep across one wavelength of the surface swell: any time before or beyond this period does
not need to be evaluated because the results are repetitive. The number of snapshots in time
is chosen such that the sonic boom waveform shift is small enough to properly approximate
the curvature of the surface—the larger the wave height. the steeper the curves, the greater
the number of snapshots. What is meant by the sonic boom waveform shifts approximating
the ocean surface curvature is shown in Fig. 7.22. Each dot represents the middle of the
sonic boom waveform (zero pressure) as it sweeps over the ocean surface. If the dots are
connected in either the large wave height or small wave height case, the resulting curve is

a good approximation to the ocean surface.

10 snapshots in time 5 snapshots in time

/-\W—\

large wave height small wave height

Figure 7.22: Dots represent the middle of the sonic boom waveform as
it sweeps across the ocean surface: a large ocean wave height and small
ocean wave height are represented.

Depending on where on the curved interface the sonic boom wave is incident, the peak
pressure values just under the surface may be either increased or decreased by varying
amounts. For each snapshot in time the most increased or decreased positive and negative
pressure values are extracted from just under the wavy ocean surface. These values are then
compared to the largest pressure amplitudes found just under a flat ocean surface. The
percent change from a flat ocean surface due to the curvature on the wavy ocean surface is
calculated as % = 100 X (Pwavy — DPRat)/Paa.- Now that it is explained how the underwater

pressure is evaluated, the effects found with each set of parameters are determined.
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The effects caused by a sonic boom interacting with an ocean interface with swell can
be divided into two main categories: 1.) how different wind wave heights strengthen the
focusing and defocusing of the evanescent acoustic pressure and 2.) how different Mach

numbers strengthen the focusing and defocusing.

For the first category. numerical results were extracted from the Mach 1.4 and Mach
2.4 runs for all wave heights. Tables 7.2 and 7.3 contain typical percent values reflecting
the change in positive and negative peaks (in the pressure waveform just under the ocean
surface) from the flat ocean result to each wavy ocean result. These numbers are taken from
the sinusoidal interface calculations for Table 7.2 and the trochoidal interface calculations

for Table 7.3.

Table 7.2: Percent change in peak pressure from the flat ocean results
due to focusing and defocusing caused by ocean swell (sinusoidal waves):
Mach 1.4 and 2.4. all ocean wave heights.

wind wave change in +/— pressure peaks
height (m) due to curvature effects
(crest to trough) M=1.4 M=24
0 0/0 0/0
1.0 0.5% / 0.1% 0.6% / 0.6%
1.4 -0.5% / —0.2% 1.6% / —1.0%
2.3 —-1.4% / 2.1% 4.1% / 5.3%
1.6% / 1.5% 1.4% / -3.8%
3.75 —2.8% /-2.8% -5.0% / 11.0%
2.0% / 5.6% 8.0% / —9.6%

For Tables 7.2 and 7.3. each set of positive and negative peak percent changes is cal-
culated from the numerical pressure values at a single time during the wave propagation
simulation. For a particular set of parameters, snapshots in time are chosen out of the set
of 5-10 snapshots, the time associated with the largest percent change. Because the percent
increase or decrease varies considerably for the 2.3 m and 3.75 m wind wave heights, two

typical results are shown for each, the other wave heights showing only one result.
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Table 7.3: Percent change in peak pressure from the flat ocean results
due to focusing and defocusing caused by ocean swell (trochoidal waves).
Mach 1.4 and 2.4. all ocean wave heights.

wind wave change in +/— pressure peaks
height (m) due to curvature effects
(crest to trough) M=14 M=2.4
0 0/0 0/0
1.0 -0.4% / —0.1% 0.4% / 0.6%
1.4 0.8% / 0.5% 1.7% / —0.7%
2.3 1.5% / 2.4% -2.8% / -2.8%
-1.4% / 2.5% 4.2% / 5.3%
3.75 0.1% /—3.4% —5.4% / 11.7%
1.3% / 5.0% 7.8% / —8.9%

Figure 7.23 also shows the results from the simple curvature simulations. The absolute
value of the highest percent change due to the curvature is extracted from Tables 7.2 and 7.3
and is plotted as a function of wave height. This plot indicates that the sinusoidal results
are very similar to the trochoidal results: later in this work. only the trochoidal surface will

be applied because of this similarity.

The percent change values in Tables 7.2 and 7.3 and Fig. 7.23 indicate that for larger
ocean wave heights the pressure values are more affected. either being decreased or increased.
For a calm ocean (wave height being 1 m). the deviation in peak pressure from the perfectly
flat ocean result is less than 1%. whereas for an ocean with significant swell (wave height
being 3.75 m), changes can be as large as 5.6% for the Mach 1.4 case or 11.7% for the Mach
2.4 case. The evaluation of the most extreme case, Mach 2.4. ocean wave height 3.75 m.
trochoidal surface profile, is useful in determining what exactly the 11.7% change means.
As seen in Table 7.4, the 11.7% is an 11.4 Pa difference in peak pressure; this corresponds
to only a 1.0 dB difference in sound pressure level, an amount not usually perceptible to

humans.

The second category regards how different Mach numbers strengthen the focusing and

defocusing of pressure values just under the surface. Because the sinusoidal and trochoidal
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Figure 7.23: Largest amplitude percent change from a simple ocean swell
to a flat surface as a function of wave height.
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Table 7.4: Change in sound level (dB): most extreme change (~5.4%/11.7%
from Table 7.3) due to curvature (trochoidal waves): Mach 2.4, ocean wave
height of 3.75 m.

surface type peak pressure (Pa) peak dB re 1uPa
pos. peak neg. peak pos. peak neg. peak
curved surface 92.42 -109.23 156.3 157.8
flat surface 97.73 -97.83 156.8 156.8
difference -5.31 -11.40 -0.5 1.0

(curved - flat)

interfaces yield very similar results, this second category describes the effects of the curva-
ture using only the trochoidal surface profile. Runs include all Mach numbers but only the
most extreme wave height. 3.75 m. Table 7.5 shows the percent changes in pressure values
Just under the ocean surface (from an incident plane wave interacting with a flat surface
to one interacting with a wavy surface). Only cases with the greatest percent changes are
shown. In viewing the data in Table 7.5. it can be seen that the highest percent changes

increase with increasing Mach number.

Table 7.5: Percent change in peak pressure from the flat ocean results
due to focusing and defocusing caused by ocean swell (trochoidal waves).
All Mach numbers. ocean wave height of 3.75 m.

wind wave change in +/— pressure peaks
height (m) due to curvature effects
(crest to trough) M=14 M=2.4 M=3.0 M=3.5
0 0/0 0/0 0/0 0/0
3.75 1.3% /5.0% | -5.4% / 11.7% |5.1% / 15.4% |8.6% / 16.9%

The second quantitative look at the simulated data involves pressure values as a function

of depth. The simulation used in this analysis includes the parameters Mach 2.4, ocean wave
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height 3.75 m. and a trochoidal surface profile. A single snapshot in time is analyzed, this
time showing the strongest effects of the curvature just under the surface (the snapshot
which gives the 11.7% percent change from the flat water results as seen in Table 7.3). The
peak positive and peak negative pressure values of the penetrating sonic boom waveform are
extracted at depths of 4. 8. 16. 32. 64, and 128 m and just under the surface (0 m). These
results are shown in Table 7.6 along with the percent change of the pressure values from
those found in the Mach 2.4/flat ocean surface simulation. Just under the ocean surface the
percent change from the flat ocean results is at most 11.7% and at 4 m, 12.8%;: at depths of
64 or 128 m the change is 2% or less. These results indicate that the underwater pressure
field closer to the surface is more affected by the ocean curvature than the pressure field at

greater depths.

Table 7.6: Pressure values at several depths for the Mach 2.4, wave height
3.75 m simulation: differences from flat ocean surface results.

Mach 2.4 difference from flat surface
depth (m) pos. peak. neg. peak +/— peaks

pressure (Pa) difference in Pa % difference
0 92.42. -109.23 -5.31 / -11.40 ~-5.4% / 11.7%
4 83.68. -101.20 -5.86 / -11.49 -6.5% / 12.8%
8 77.10. -90.67 -4.57 / -8.67 -5.6% / 10.7%
16 65.71. -73.95 -2.54 / -5.35 -3.7% / 7.8%
32 47.60. -51.28 -0.90 / -2.21 -1.9% / 4.5%
64 26.34. -27.72 0.13 / -0.40 0.5% / 1.5%
128 9.06. -12.08 -0.14 / -0.24 -1.5% / 2.0%
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7.2.4. Discussion of results

Results indicate that as a sonic boom interacts with the ocean surface with swell, its
energy is being focused in the troughs and defocused over the crests. Two trends can be
identified when extracting pressure values from just under the ocean surface. The first
trend shows that the effects caused by the curvature are stronger for greater ocean wave
heights, the largest percent change from the flat surface results being 11.7% in the Mach
2.4 case: this corresponds to a 1 dB increase. The second trend is that the highest percent
changes increase with increasing Mach number. It should be noted that this trend was found
when assuming the sonic boom has a duration of 300 ms. A section later in this chapter
will address the issue of sonic boom duration and its corresponding effective wavelength
compared to the ocean surface wavelength. When extracting pressure values at various
depths. it is shown that the underwater pressure closer to the surface is more affected by
the curvature than the pressure at greater depths. Excerpts from results in this section are

also found in Rochat and Sparrow.%?

7.3. Homogeneous Ocean with a Complex Curved Surface: Computa-

tional Simulations

The second set of computational simulations for a wavy ocean surface includes the two
complex surface profiles, a trochoid plus a half-wavelength sinusoid (complex combination
1) and a trochoid plus a third-wavelength sinusoid (complex combination 2). These profiles
are implemented to investigate the effects of waves with more complex structure: they are
crude approximations to a fully developed sea. A necessary addition to the computer code
and the physical parameters used in these simulations will be described. Also. the effects

caused by the ocean curvature will be quantified and discussed.
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7.3.1. Computer program

The same computer program that was used for the simple curved ocean surface is used
here. However. the curvature of the complex combination 1 profile lead to instabilities
independent of the ones found previously for the simple curved surfaces. As a result.
an additional filter is applied to this profile. but not to the complex combination 2 profile.
Again the instability is due to the grid-block approximation of the surface curve. Figure 7.24
illustrates the problem grid points and the application of this additional filter: again, this
illustration does not give accurate dimensions. and the raggedness is greatly exaggerated.
Running the program with the “smoothing” filter (described in the previous section) and
this new filter allows for successful calculations for a sonic boom interacting with a complex

curved surface.

Figure 7.24: [llustration of the additional filter applied to the complex
ocean surface curve.

7.3.1.1. Physical parameters

As stated before, the wavy ocean simulations propagate a rounded sonic boom wave-
form. The initial waveform inserted in the computational domain is the same as in Chapter
6 and the previous section: the peak pressure of the sonic boom is 50 Pa and the duration
300 ms. The two Mach numbers used are 1.4 and 2.4.

The ocean surface profiles chosen to represent waves with more complex structure than
swell are a trochoid plus a half-wavelength sinusoid (complex combination 1) and a trochoid
plus a third-wavelength sinusoid (complex combination 2). Please refer to Sect. 7.1.1.2 for

the equations used to calculate these surfaces and their illustrations; specifically Eq. (7.3)
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and Fig. 7.4 for complex combination 1 and Eq. (7.4) and Fig. 7.5 for complex combination
2. The two ocean wave heights used in these simulations are 2.3 m and 3.75 m (see Table 7.1
for corresponding wind speeds): the smaller wave heights are not implemented because it was
found with the simple curved surface results that the pressure change due to the curvature
associated with these wave heights is trivial.

As in the simple curved surface simulations. the air and the ocean are homogeneous
for the complex surface simulations. In the air the speed of sound ¢, is 343 m/s and the

density p, is 1.21 kg/m®>. In the ocean ¢, = 1500 m/s and p, = 1000 kg/m3.

7.3.2. Program runs

The same computational parameters (grid spacing, number of grid points. ...) are used
in the curved surface simulations as were used in the flat surface simulations in Chapter 6
and for the simple curved surface simulations. In addition to the two complex ocean surface
profiles. two physical parameters are varied: the Mach number and the ocean wave height.
The Mach 1.4 and 2.4 cases are run for wave heights of 2.3 and 3.75 m. Again. to find out
the ocean curvature effects. the runs mentioned in Chapter 6 for a flat ocean surface for the

Mach 1.4 and 2.4 cases are used for comparison.

7.3.3. Effects caused by a complex curved ocean surface

7.3.3.1. Qualitative description of effects

A sonic boom interacting with the complex combination 1 ocean surface is seen in
Fig. 7.25. As in previous graphics of the full computational domain, the black dashed lines
enclose the refined grid region. the plot appearing stretched out in that area. Also, the
black curvy line is the ocean surface. A blue/red/yellow color palette is chosen to represent
the pressure values: blue represents negative pressure, red positive pressure, and yellow high
pressure amplitudes. What is apparent in Fig. 7.25 is that, as in two of the color plots of
the trochoidal ocean surface (Figs. 7.19 and 7.21) the highest pressure amplitudes are found

in the troughs of the ocean waves. In this complex case. the trochoidal surface troughs are

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



113

divided into two smaller troughs by the lower amplitude sinusoid. The build-up effect of
the pressure is divided by the sinusoid peak. creating two areas of high amplitude in the
smaller troughs. Figure 7.25 shows the high amplitude pressure of the negative peak of the
sonic boom in one of the smaller troughs.

A sonic boom interacting with the complex combination 2 ocean surface is seen in
Fig. 7.26. Again. a blue/red/yellow color palette is chosen to represent the pressure values.
As before, the highest pressure amplitudes are found in the troughs of the ocean waves.
Figure 7.26 shows the positive peak of the sonic boom waveform having high amplitude
pressure values in a trough of the ocean surface. In this complex case, the troughs created
by the trochoid seems to govern the areas of high amplitude. while the small amplitude

sinusoid only quantitatively affects the impinging waveform (described in next section).

7.3.3.2. Quantitative description of effects

A quantitative look at the simulated data examines pressure values just under the ocean
surface. Numerical results were extracted from the Mach 1.4 and Mach 2.4 runs for the two
larger wave heights. As for the simple curved surface results. several snapshots in time were
evaluated, and the most significant results are presented here. Tables 7.7 and 7.8 contain
typical percent values reflecting the change in positive and negative peaks (in the pressure
waveform just under the ocean surface) from the flat ocean result to each wavy ocean
result. These numbers are taken from the complex combination 1 interface calculations for

Table 7.7 and the complex combination 2 interface calculations for Table 7.8.

For both complex surface combinations, the higher wave height causes greater changes
in pressure: this is consistent with the trend found for the simple curved surfaces. However,
it is obvious from looking at Tables 7.7 and 7.8 that the second trend observed for the simple
curved surface (higher Mach numbers result in higher pressure changes due to curvature) is
not true for the complex surfaces. The greatest percent change for complex combination 1
is the same for the Mach 1.4 and 2.4 cases, 11.2%. For complex combination 2, the greatest

percent change for Mach 1.4 is 8.5% and for Mach 2.4, 8.3%.
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Figure 7.25: Mach number 2.4, wave height 3.75 m, complex combination
1 surface profile, pressure field; incident wave interacting with the air-water
interface.
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Figure 7.26: Mach number 2.4, wave height 3.75 m, complex combination
2 surface profile, pressure field; incident wave interacting with the air-water
interface.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



116

Table 7.7: Percent change in peak pressure from flat ocean results due
to focusing and defocusing caused by a complex surface (combination 1);
Mach 1.4 and 2.4. ocean wave heights: 2.3 and 3.75 m.

wind wave change in +/— pressure peaks
height (m) due to curvature effects
(crest to trough) M=14 M=2.4
0 0/0 0/0
2.3 1.9% / 6.5% 3.5% / 1.8%
-1.6% / 7.9% 1.9% / 3.3%
3.75 -0.3% / 11.2% 5.6% / —1.1%
4.1% / —0.3% -5.0% / 11.2%

Table 7.8: Percent change in peak pressure from flat ocean results due
to focusing and defocusing caused by a complex surface (combination 2):
Mach 1.4 and 2.4, ocean wave heights: 2.3 and 3.75 m.

wind wave change in 4+/— pressure peaks
height (m) due to curvature effects
(crest to trough) M=14 M=2.4
0 0/0 0/0

2.3 0.3% / 7.5% 23% / 2.8%

1.3% / 0.7% 0.7% / 3.4%

3.75 0.7% / —6.4% —5.4% / 8.3%

1.3% / 8.5% 5.4% / —5.9%

7.3.4. Discussion of results

As was found for the simple ocean swell. results indicate that as the sonic boom inter-
acts with the complex wavy ocean surface, its energy is being focused in the troughs and
defocused over the crests. Effects caused by the curvature are stronger for greater ocean
wave heights, consistent with the trend found for the simple curved surface. The largest
percent change in peak pressure was 11.2%; this corresponds to less than 1 dB. Results in-
dicate, however, that the complex numerical data do not follow the other simple ocean swell

trend, that the highest percent changes increase with increasing Mach number. Inspired
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by this inconsistency, research was conducted to determine the cause: the following section

reveals the results of this investigation.

7.4. Wavelength Comparisons: Computational Simulations

7.4.1. Wavelengths

As was explained in Chapter 2. the term effective wavelength descritbes the physical
length associated with the sonic boom duration. For all previous runs the sonic boom
duration T was 300 ms: this is associated with a sonic boom effective wavelength Asoom
of 102.9 m in air (Apgom = Ca:rI'). The results for the simple and complex ocean profiles
indicate that the positive and negative peaks of the sonic boom waveform interact with the
ocean waves separately: while one peak is in a trough of the ocean surface the other peak
is either on the far side of the neighboring peak or in the next trough. Hence, looking at
just one peak of the sonic boom is warranted. The wavelength associated with half the
duration of the sonic boom is Alboom = 51.5 m. Since the ocean surface is horizontal in the
computational domain. the horizontal component of ALboom AlLboom.hor:z+ 1S applied when
comparing the sonic boom effective wavelength to the ocean surface wavelength. The length
of the horizontal component is Mach number dependent. Figure 7.27 illustrates the sonic
boom effective wavelength variables. Table 7.9 gives effective wavelengths for the full and
half sonic boom and the horizontal components of the full boom and half sonic boom for

the Mach 1.4 and Mach 2.4 cases.

For a simple trochoidal ocean surface profile the wavelength Ayceqn is taken to be twenty
times the wave height. Table 7.10 gives the wavelengths for the ocean wave heights of 2.3 m
and 3.75 m. Also shown in Table 7.10 are the largest and smallest wavelength components
used for each of the complex ocean surface profiles and each of the wave heights. Recall
that the complex combination 1 surface is a trochoidal wave just like the simple surface

one but with a lower-amplitude. half-wavelength sinusoid superimposed. Also the complex
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Figure 7.27: Illustration of the sonic boom effective wavelength variables.

Table 7.9: Sonic boom effective wavelengths.

effective horizontal component of
wavelength effective wavelength
M=14 M=24

full sonic boom | Apoom = 102.9 m | Mpvom hore: = 73.5 m Aboom.hort: = 42.8 m

half sonic boom Alpoom = 51.5 m ’\%boom.hort: =36.8 m | Apoom.horiz = 21.4 m

combination 2 surface is the trochoid with a lower-amplitude, third-wavelength sinusoid

superimposed.
As a way of comparing the sonic boom effective wavelength with the ocean wavelength

the following ratio is defined: A-Ratio = Alboom.horiz/ Aocean- Given in Table 7.11 are values
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Table 7.10: Wavy ocean wavelengths A,..... H is the ocean wave height.

ocean surface largest wavelength smallest wavelength
profile component component
H=23m H=37m H=23m H=375m
trochoidal 146.0 m 75.0 m 46.0 m 75.0 m
complex combo 1 46.0 m 75.0m 23.0 m 37.5 m
complex combo 2 16.0 m 75.0 m 153 m 250 m

for A-Ratio for the trochoidal and complex surfaces. the smallest wavelength component
used for Aycean. The values for Alboom.hor:: @Ssume that the sonic boom duration is 300 ms.
The trend found for the simple surface profiles was that higher Mach numbers are associated
with greater effects caused by the curvature of the wavy surface. As seen in Table 7.11.
the values of A-Ratio where that trend was seen are all less than one. It was thought that
perhaps the trend holds only for A-Ratio < 1 and not for A-Ratio ~ 1 or A-Ratio > 1. A

systematic approach was developed in order analyze the situation.

Table 7.11: A-Ratio = Aipoom.noriz/Aocean for trochoidal and complex
surfaces: the smallest wavelength component of the complex ocean surface
is used for Agceqn-

ocean surface A-Ratio
profile M=14 M=24
H=23m H=37m H=23m H=375m
trochoidal 0.80 0.49 047 0.29
complex combo 1 1.60 0.98 0.93 0.57
complex combo 2 241 1.47 1.40 0.86
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7.4.2. Computer program, physical parameters, and program runs

The computer programs used for the simulations in this section are those for a tro-
choidal ocean profile. Again. a rounded sonic boom with a peak pressure of 50 Pa is the
initial waveform. For these runs. however. the duration of the sonic boom varies. Varying
the duration allows a systematic evaluation of the wavelength ratio A-Ratio and the corre-
sponding effects. The durations are chosen such that A-Ratio ranges from 0.125 to 1.875 in
steps of 0.125: this adds up to 15 ratios or durations. Due to the size of the computational
domain the runs are limited: not all cases (combinations of Mach 1.4 and 2.4 and ocean wave
heights 2.3 m and 3.75 m) were run to completion. The only wave height applied is 2.3 m
since the duration of the sonic boom would have to be quite long in order to accommodate
the higher wavelength ratio values for the ocean wave height of 3.75 m. The Mach 1.4. wave
height 2.3 m case is run for all wavelength ratios. The Mach 2.4, wave height 2.3 m case is
run for all wavelength ratios less than or equal to one: the higher wavelength ratios cannot
be applied because of computational limits. Table 7.12 gives the values of A-Ratio and the
corresponding durations. It should be noted that not all of these sonic boom durations rep-
resent realistic sonic booms: this exercise is purely for the understanding of the wavelength

variations and the corresponding effect.

7.4.3. Results

As before. for every case run. several snapshots in time are evaluated. The largest
modification of the pressure values just under the surface are then turned into percent change
from the flat ocean results. Figure 7.28 shows the results of this wavelength comparison
study. It is a plot of the largest amplitude percent change from a flat surface caused by
a simple ocean swell for the corresponding wavelength ratio A-Ratio = Alboom horz / Aocean-
The line with dots represents the Mach 1.4 results, and the line with squares represents the
Mach 2.4 results: these two curves roughly follow the same path, indicating that for a wavy
surface the percent change is governed by the relation between the sonic boom and ocean

wavelengths rather than the Mach number. Overall the curves show that the effects of the
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Table 7.12: Values of A-Ratio and sonic boom durations used in program
runs.

A-Ratio duration of full sonic boom (seconds)
M=14,H=23m M=24 H=23m
0.125 0.047 0.080
0.250 0.094 0.161
0.375 0.141 0.241
0.500 0.188 0.322
0.625 0.235 0.402
0.750 0.282 0.483
0.875 0.329 0.563
1.000 0.376 0.644
1.125 0.422 —
1.250 0.469 —
1.375 0.516 —
1.500 0.563 —
1.625 0.610 —
1.750 0.675 —
1.875 0.704 —

ocean waviness are more significant when the ocean surface wavelength is larger than the

horizontal component of the sonic boom effective wavelength.

Cheng, et al.®? assert that waviness influence will be significant only for swell with
wavelengths comparable to or much larger than the sonic boom effective wavelength. The
arrow in Fig. 7.28 indicates where the sonic boom effective wavelength (not the horizontal
component) is comparable to the ocean wavelength. It is at this point on the plot where
the largest percent change is approximately 7%. Sonic boom effective wavelengths larger
than the ocean wavelength would be associated with percent changes larger than 7%. So

the plot in Fig. 7.28 supports Cheng, et al.'s assertion.

Now it is necessary to go back to the trochoidal ocean profile results and the complex
profile results and see where specific values of A-Ratio fall on the plot and if the percent

change predicted by Fig. 7.28 matches with those previously presented in the results tables.
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Figure 7.28: Largest amplitude percent change from a simple ocean
swell to a flat surface for the corresponding wavelength ratio, A-Ratio
= Alpoom.horiz/ Aocean- Mach 1.4: dots, Mach 2.4: squares.
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Table 7.13 presents A-Ratio. the absolute value of the largest percent change found in the
simulation, the largest percent change approximated using Fig. 7.28, and the absolute value
of the difference between the results obtained in the simulations and those predicted using
Fig. 7.28; each of these is presented for the trochoidal surface profile, various Mach numbers,
and various wave heights. It should be noted that the largest percent changes extracted
from the plot in Fig. 7.28 are approximated by taking the average of the two curves. It
is seen from the differences that the approximations using the plot are quite accurate, the
largest difference being 1.4%. This indicates that, in fact. when a sonic boom impinges upon
an ocean with a simple surface profile, the amount that waveform is affected is governed by
the relation between the sonic boom effective wavelength and the ocean surface wavelength.

When studying the trochoidal surface profile back in Sect. 7.2 with wave height 3.75 m
and a 300 ms duration sonic boom and applying different Mach numbers. the boom duration
was kept constant and the Mach number was varied. unlike the simulations that were just
described. By increasing the Mach number. A-Ratio decreases, and Fig. 7.28 implies that
the largest percent change increases. This explains the trend that the higher Mach numbers
have a greater effect due to curvature.

Now the complex surface results are presented for the wavelength comparisons. Ta-
ble 7.14 presents the same information as in Table 7.13. but now \-Ratio is shown for the
largest and smallest components of the complex ocean surface profile; this results in two
predictions and two differences between predictions and the simulations. It is obvious from
Table 7.14 that the smallest ocean wavelength component does not govern the effects of the
curvature nor does the largest ocean wavelength component. Each is off by more than 6%
in some cases. It follows that the plot in Fig. 7.28 cannot be used to predict how much the

curvature of the complex ocean surface affects the impinging sonic boom.
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Table 7.13: Largest amplitude percent changes for simulations and pre-
dictions from plot in Fig. 7.28: also the difference between these two results:
TROCHOIDAL surface.

Mach | ©cean simulation | Fig- 7.28 | magnitude
number | Wave | A-Ratio | oz change | Predicted |of difference
height % change | in percent
1.4 1.0 1.84 0.4 0.5 0.1
1.4 1.31 0.8 1.0 0.2
2.3 0.80 2.5 2.0 0.5
3.75 0.49 5.0 5.0 0.0
2.4 1.0 1.07 0.6 1.8 1.2
1.4 0.76 1.7 2.4 0.7
2.3 0.47 5.3 5.1 0.2
3.75 0.29 11.7 11.0 0.7
3.0 3.75 0.23 15.4 14.8 0.6
3.5 3.75 0.20 16.9 15.5 1.4

Table 7.14: Largest amplitude percent changes for simulations and pre-
dictions from plot in Fig. 7.28; also the difference between these two results:
COMPLEX surfaces.

ocean A-Ratio Fig. 7.28 magnitude
Mach wave | largest ocean |smallest ocean [simulation | predicted | of difference
number height | component component % change | % change | in percent
(loc) (soc) (loc) | (soc) | (loc) | (soc)
combo 1
1.4 2.3 0.80 1.60 7.9 2.0 1.0 5.9 6.9
3.75 0.49 0.98 11.2 50 | 2.0 6.2 9.2
2.4 2.3 0.47 0.93 35 5.1 2.0 1.6 1.5
3.75 0.29 0.57 11.2 11.0 | 5.0 0.2 6.2
combo 2
1.4 2.3 0.80 241 7.5 2.0 — 5.5 —
3.75 0.49 1.47 8.5 5.0 1.3 3.5 7.2
2.4 23 0.47 1.40 2.8 5.1 1.3 2.3 1.5
3.75 0.29 0.86 8.3 11.1 | 2.5 2.8 5.8
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7.4.4. Discussion of results

In conducting these wavelength comparison studies. a tool was developed to help predict
the magnitude of the effect that simple ocean curvature has on an impinging waveform. For
a particular Mach number and ocean wave height. the plot in Fig. 7.28 can be used to
estimate the percent change of the acoustic pressure just under the surface from a flat
ocean to that with simple ocean swell. For complex surfaces, however, the plot cannot
be applied. So although the complex surface studies prompted the wavelength comparison
studies. the resulting prediction plot cannot help in determining the underwater pressure.
The wavelength comparison studies do not explain the unpredictability of the curvature
effects felt by a sonic boom interacting with a complex ocean surface. It is concluded that

each complex surface case must be treated individually as in Sect. 7.3.

7.5. Summary of Overall Results for a Wavy Ocean Surface

Qualitatively. it is seen that as a sonic boom impinges upon a wavy ocean surface. its
energy is focused in the ocean wave troughs and defocused over the ocean wave crests. The
amplitude of the underwater pressure just under the troughs is higher. and in the crests
is lower. than would be for the case of the pressure values just under a flat ocean surface.
Quantitatively. looking at a sonic boom with a peak pressure of 50 Pa and duration of 300
ms, this pressure increase/decrease is at most 11.7% for a simple ocean surface and 11.2%
for a complex ocean surface: in either case. the change in peak dB level is 1 or less. Two
trends can be identified when extracting pressure values from just under a simple ocean
swell: 1.) increasing wind wave heights strengthens the focusing and defocusing of the
evanescent acoustic pressure and 2.) increasing the Mach number strengthens the focusing
and defocusing due to curvature. The first trend is confirmed by the complex ocean surface
simulations. but the second is not. Studying the relation between the sonic boom effective
wavelength and the ocean wavelength reveals a useful tool for predicting the curvature
effect for various Mach numbers and ocean wave heights for an ocean with a simple surface
profile; these studies also explain the second trend. However, this prediction tool cannot

be applied to complex surfaces: each complex case must be treated independently. Lastly.
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when extracting pressure values as a function of depth for a simple ocean surface simulation,
it is shown that the effects of curvature on the underwater pressure are stronger near the

ocean surface than at greater depths.
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Chapter 8.

Inhomogeneous Ocean with Flat Surface: Concepts
and Computational Simulations

Chapter 7 introduced the first realistic ocean feature. waviness on the ocean surface, to
the computational simulation. This chapter introduces the second realistic ocean feature.
bubbles near the surface. In order to isolate the effects of this feature. the ocean surface is
flat for the simulations including the bubbles. According to Snell’s Law, the speed of sound
in water must be less than about 823 m/s for a flat ocean surface to allow propagation
of a sonic boom waveform for the Mach 2.4 case. In a flat homogeneous ocean, the speed
of sound is approximately 1500 m/s. so propagation is impossible. However. the presence
of bubbles in an ocean changes its sound speed. In an extreme case,® the speed of sound
in the bubbly water could be as low as 500 m/s: for the Mach 2.4 case. there should then
be propagation into this ocean. It is therefore important to add the feature of ocean
bubbles to the overall analysis. After a review of ocean bubble concepts. the results of the
computational simulations including a simple flat model of the bubble layers and a bubble

plume model will be revealed.

8.1. Ocean Bubbles

8.1.1. Bubble generation

Bubbles in the ocean are formed when wind-generated waves break. The Beaufort
Scale (mentioned in Chapter 7. found in many references including Refs. 3, 7. and 22,
among others) reveals that waves start to break when the wind speed is from 7-10 knots
(kn) (3.4-5.4 m/s): it is at this sea state that scattered whitecaps appear.®7 Large numbers
of bubbles are entrained during the breaking wave process; air is trapped or enveloped as the
seawater surrounds it.% Figure 8.1 illustrates a breaking wave causing bubble entrainment;

this is not an accurate illustration, rather just a pictorial explanation of entrainment. These
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bubbles are actually seen in groups under the ocean surface as clouds or plumes, their
shape and depth dependent on the turbulent motions in the water.5* Figure 8.2 is taken
from Thorpe:®* it shows actual bubble plumes as a function of time. measurements taken in
fresh water by sonar. These bubble plumes are presented simply to show their shapes: the
number of meters in depth that the bubble plumes reach is dependent on the wind speed

and will be explained later in this chapter.

A YA U

time | time 2 time 3

Figure 8.1: Breaking ocean wave causing bubble entrainment.

ocean surface

bubble plumes

Figure 8.2: Actual bubble plumes as a function of time: taken from
Thorpe.®! Illustrated to show bubble plume shapes.

Even though ocean bubbles dissipate after formation. their existence should not always
be considered transient. Studying the bubble plume depth, the maximum lifetime of a
bubble plume, and the frequency of wave breaking, it is determined that if the wind speed

exceeds 12.6 kn (6.5 m/s), the bubbles will persist from one wave break to the next.3¢ The
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Beaufort Scale categorizes this wind speed as a “moderate breeze,” where whitecaps are
fairly frequent. So while at lower wind speeds bubbles will not exist or may be formed in
discrete patches. the bubble plumes will overlap at higher ones forming a continuous bubble

layer. Recall that the wind speeds applied in Chapter 7 were 10. 20, and 30 knots.

8.1.2. Bubble plume parameters

In general, the speed of sound in a bubble plume depends on the size and number of
bubbles and on the frequency of the sound.’® However. if the insonification frequency is
much lower than any of the bubbles’ resonance frequencies. then the plume can be viewed
as a uniform body with an effective acoustic impedance.?®!* The assumption just stated
will be applied: what follows is the justification for its application.

Although an N-shaped sonic boom has significant high frequency content. it can be
found that most of its energy is at frequencies below 400 Hz. most significant below 40 Hz
(as stated in Chapter 2). In order to use the assumption. it must be shown that 400 Hz is
much lower than any of the single bubbles’ resonance frequencies. The resonance frequency
of a freely oscillating bubble is called the Minnaert resonance frequency and can be expressed

8536

1 3P (8.1)

T = 32\ .

where fu,; is the frequency in hertz, R, is the bubble radius. ~ is the ratio of specific heats
for the liquid, p, is the ambient pressure in the liquid. and p, is the liquid density. For
seawater, v = 1.01 and p, = 1000 kg/m?®.

For R, and p,, it is best to examine the most extreme cases to find the lowest possible
resonance frequency. The smallest value of ambient pressure is just under the surface:
here, p, = 1.01 x 10° Pa. (The pressure can be calculated as a function of depth using
P = Po + pogh. where p, is the pressure at the surface. p, is the liquid density, g is the
gravitational constant, and h is the distance from the surface.) Extreme bubble radii have
been observed to be approximately 300 um for the largest and 20 pum for the smallest.5*
Using Eq. (8.1). the resonance frequency of a 300 zm radius bubble near the ocean surface is
calculated to be approximately 9.3 kHz. A more commonly observed bubble, say one with

an 80 um radius, has a resonance frequency near the surface of 34.8 kHz. Even the lowest
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bubble resonance (9.3 kHz) is much greater than the majority of the sonic boom frequency

content (< 400 Hz).

It is therefore possible, assuming that the significant frequency content in a sonic boom
is much lower than any bubble’s resonance frequency. to look at the portion of the ocean
containing bubbles as an area of effective acoustic impedance rather than modeling indi-
vidual bubbles. its speed of sound and density must be calculated as a function of depth.
The speed of sound profile used for an ocean with bubbles resembles the exponential law
as a function of depth.3%:!9 A plot of this profile can be seen in Fig. 8.3. The values reflect
an extreme case’ where the speed of sound at the surface is 500 m/s. The values decay to

1500 m/s at the maximum depth of the bubble plume.

¢ (m/s)

1000 1250 1500

Figure 8.3: Speed of sound profile near the surface of an ocean with
bubbles. The case shown is for a 30 knot wind.

The average depth of a bubble plume can be determined by®*

depthave = 0.4 (wind speed — 2.5) . (8.2)
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The wind speed here is in meters/second and the depth,.. in meters. The maximum depth

of a bubble plume is approximately twice the average depth.
depthyfay =& B x depthyye . (8.3)

where B is approximately 2. actually about 2.3 for a 20 knot wind and 1.9 for a 30 knot
wind. Equation (8.3) is formulated extracting values from plots in Farmer and Vagle!® and
Thorpe.® It can be seen from Egs. (8.2) and (8.3) that as the wind speed increases. the
maximum depth of the bubble plume increases. For example, for a wind speed of 20 knots
(10.28 m/s). the maximum depth of the bubbles is approximated to be 7 m and for 30 knots
(15.42 m/s) it is 10 m.

The density in bubbly water can be calculated as!?
pPo=(1—a)p+ap, . (8.4)

where p; is the density in the pure liquid. p, is the density of the gas inside of the bubbles,
and « is the void fraction. the fraction of unit volume of the mixture occupied by the gas.
The void fraction on average is found to be much less than 1%:5% so, although the speed

of sound is significantly changed due to the bubbles. the density change is negligible.

8.1.3. Analytical description of bubbles

The analytical description of ocean bubbles is here separated into two models. one
simple and one more complicated. Instead of a continuous change in speed of sound with
depth, the part of the ocean containing the bubbles is divided into sections or layers; as
depth increases, each layer has an increasing sound speed. but the density remains a constant
(the density of the water without the bubbles). A simple model is constructed with several
flat bubble layers, and a more complicated model consists of one bubble plume also with
several bubble layers.

A simple model is desirable in order to find the effects of the bubbles (on the sonic boom)
Just from the different impedance layers and not from the shape of the bubble plumes. Flat
bubble layers, each with a different sound speed, span the width of the computational
domain. Each layer has a specified height or thickness. the sound speed calculated at the

layer’s average depth using an exponential approximation similar to the one in Fig. 8.3.
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The equation used for approximating the speed of sound in the bubble layers is

Coub = Cwater — {Cwater — Csurface) eldepth/efold) (8.5)
where c,q¢r is the speed of sound in the ocean without bubbles, c,,, face is the speed of
sound in the bubble layers right near the surface (here taken to be 500 m/s), depth is the
depth from the surface (a negative value), and efold determines the shape of the exponential
decay. Values for efold are here case specific. for a 20 knot wind efold = 1.05, and for a
30 knot wind efold = 1.5. These efold values were chosen to approximate the shape of the
sound speed profiles found in Ref. 19. The layers are narrower near the surface where the
sound speed is rapidly changing. The number of layers depends on the maximum depth of
the bubbles which depends on the wind speed. Appendix B shows the input file bublayers
which contains all parameters for the flat bubble layers: the case shown is for a 20 knot
wind. Values for the number of layers, each layer’s thickness, and the speed of sound and
density for each layer will be presented for each wind speed later in this chapter.

A more realistic model of bubbles in the ocean would include bubble plumes. If sound
energy does penetrate a bubble plume, there is the possibility that it may become trapped.
bouncing around and forming a concentrated noise source.

The more complicated model applied here is a single bubble plume. In order to model
a bubble plume it is necessary to determine its approximate shape. This is somewhat of
an ambiguous task since the shape can never be represented by a smooth. known function.
The shape of a bubble plume depends on the heat flux through the water surface. columnar
plumes appearing when the air is colder than the water. billow-like plumes when the water
is colder than the air.®* References 33 and 37 indicate that a semi-circular plume located
immediately below the free surface is a good geometric model of observed plumes: this model
seems to resemble the billow-iike plumes more than the columnar plumes. For the current
work, a function was chosen that represents a somewhat billow-like, somewhat columnar
type plume.

A single bubble plume is modeled using a sine squared function. This function was
chosen for its nice smooth profile, an important feature when approximating its curve with
computational grid blocks. The model, seen in Fig. 8.4. is comprised of bubble layers. The

speed of sound for each bubble layer is calculated as if the layers were flat, as in the previous
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ocean surface

0 10 20 30 40

(m)

Figure 8.4: Profile of bubble plume near the surface of the ocean. The
case shown is for a 30 knot wind.

model. However. there are fewer layers used in the bubble plume model than in the flat

bubble layer model.

8.2. Flat Bubble Layer Model: Computational Simulations

8.2.1. Computer program

The computer program used for the computational simulations in Chapters 6 and 7 is
also used here. In addition. flat bubble layers are included in the code. The program allows
the choice of bubbles or no bubbles; if bubbles are chosen. an input file containing all the
information for the bubble layers is then read.

In addition to using the air-water interface finite difference scheme at the flat ocean
surface. it is also applied between each bubble layer. Moreover, the refined grid region is
now stretched to include all bubble layers. It should be noted that since the domain is still

800 grid points in the z direction, this implies that the domain has physically shrunk.
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8.2.2. Program runs

Two runs of the program including the flat bubble layver model were made in order to
help assess the impact bubbles have on an impinging sonic boom waveform. For the sonic
boom, the peak pressure is 50 Pa and the duration 300 ms: the only Mach number used
is 2.4. Calculations were performed for two different wind speeds, 20 knots (10.3 m/s) and
30 knots (15.4 m/s). In each case the ocean surface is flat: while unrealistic for these wind
speeds. this separates the bubble effects from the wind wave effects. Table 8.1 presents the
bubble layer parameters used for the 20 knot and 30 knot flat bubble layer model runs. As
seen in Table 8.1. each layver has an associated thickness. The maximum depth. the total
of all thicknesses added together. is determined using Egs. (8.2) and (8.3). The speed of
sound is calculated using Eq. (8.5), and the density is the same in all cases since it was

determined that the density change due to bubbles is negligible for this work.

Table 8.1: Flat bubble layer model parameters for two wind speed cases:
¢, is the speed of sound. and p, is the density.

layer bubble layers for 20 kn wind case bubble layers for 30 kn wind case
number | thickness (m) | ¢, (m/s) | p, (kg/m?) | thickness (m) |c, (m/s) | p, (kg/m?3)
1 0.5 712 1000 0.5 654 1000
2 0.5 1010 1000 0.5 893 1000
3 0.5 1196 1000 0.5 1065 1000
4 0.5 1311 1000 0.5 1189 1000
5 0.5 1383 1000 0.5 1277 1000
6 0.5 1427 1000 0.5 1340 1000
7 1.0 1464 1000 1.0 1403 1000
8 1.0 1486 1000 1.0 1450 1000
9 2.0 1497 1000 2.0 1482 1000
10 — e — 3.0 1497 1000

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



135

8.2.3. Effects caused by flat bubble layers in ocean

The simulation that will now be analyzed is for the 30 knot case. It was reasoned that
the more extreme case would be more likely to show effects due to the bubbles if there are
any. A plot of the full computational domain appears in Fig. 8.5. The solid white lines
represent the ocean surface and the bottom of each bubble layer: as in previous full-domain
pictures. the dashed white lines enclose the refined grid region. This picture shows a time
near the completion of the simulation, ¢t = 0.75 s. After observation. it appears that there
is no propagation of the sonic boom into the ocean: the pressure field and especially the
intensity field indicate that the sonic boom is penetrating the ocean as an evanescent wave.
As in previous simulation results. the grid appears stretched in the refined grid region: this
region is larger than before since the refinement surrounds all of the bubbles layers. not just

3 m above and below the air-water interface.

Now that it is seen that flat layers of bubbles do not allow propagation into the ocean.
the question remains as to whether or not they affect the evanescent field. It is appropriate to
compare a run with the ocean bubbles to one without in order to find the answer. A vertical
slice of data is extracted from the two-dimensional computational domain. F ig. 8.5. at two
horizontal locations: these two locations are chosen to be the “hottest.” greatest pressure
value. and “coldest.” lowest pressure value. just under the ocean surface. Figure 8.6 shows
two line graphs. each a vertical extraction at the greatest positive peak pressure. for the
runs with and without ocean bubbles. The vertical axis is pressure and the horizontal axis
is the vertical grid location: the interface is at -340 m, pointed to with a large black arrow.
It can be seen that the two curves overlap. indicating that the ocean bubbles do not have an
effect on the evanescent field. Figure 8.7. vertical line extractions at the greatest negative

peak pressure. repeats this indication.

Further investigation, however. reveals that there are slight changes in the underwater
pressure field. Table 8.2 presents percent changes from the flat homogeneous ocean results
(found in Chapter 6) caused by the flat ocean bubble layers. The results at several depths
are shown since the bubble layers extend several meters into the ocean, and any potential
effects of the bubbles may be apparent there instead of just near the surface. Table 8.2

indicates that most of the changes in peak pressure are less than 1%. The maximum
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pressure and intensity; M=2.4; flat bub. layers; 30 kn wind; #160
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Figure 8.5: Mach number 2.4, flat ocean surface, flat bubble layers, pres-
sure and intensity fields: incident wave interacting with the air-water in-
terface; t = 0.75 s.
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percent change is at the 128 m depth, a magnitude of 4.57% for the 20 knot wind case and
5.33% for the 30 knot wind case: the changes in pressure (Pa) are also given for these cases
just to show really how little the pressure is affected. Since the pressure values are relatively
small at these depths these percent changes correspond to only 0.5 dB and 0.4 dB changes.
respectively. Even though the effects are shown to be minimal, it should be noted that the

percent changes are slightly greater for the 30 knot wind case than the 20 knot wind case.

Table 8.2: Percent change in peak pressure from ocean without bubbles
caused by the flat bubble layers; Mach 2.4, 20 and 30 knot wind cases.

depth % difference caused by flat bubble layers
(m) +/— peaks
20 kn case 30 kn case
0 0.03% / 0.02% 0.04% / 0.03%
4 0.06% / 0.07% 0.09% / 0.12%
8 0.05% / 0.07% 0.09% / 0.15%
16 0.01% / 0.10% 0.03% / 0.20%
32 ~0.06% / 0.20% ~0.10% / 0.41%
64 -0.46% / 0.55% -0.72% / 1.10%
128 —157% / 1.94% —5.33% / 3.20%
(—0.42 Pa / —0.23 Pa) (—0.49 Pa / —0.39 Pa)

8.2.4. Discussion of results

Computational simulations including flat bubble layers and a flat ocean surface indicate
that the sonic boom noise penetrates the ocean surface only as an evanescent wave. As stated
before, for the Mach 2.4 case the sound should penetrate the ocean surface as a propagating
wave if the sound speed is less than 823 m/s. Table 8.1 shows that the top layer of bubbles
for both the 20 knot and 30 knot cases has a sound speed less than 823 m/s; the underwater
sound field is probably unaffected by this layer because its thickness is only 0.5 m. Since

the sonic boom effective wavelength is quite large in comparison (x~ 103 m in air for the
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Figure 8.6: Vertical intersection of the greatest positive peak pressure
of the sonic boom waveform. The solid gray line represents the numerical
data for the ocean without bubbles: the dashed black line represents the
numerical data for the ocean with bubbles.
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Figure 8.7: Vertical intersection of the greatest negative peak pressure
of the sonic boom waveform. The solid gray line represents the numerical

data for the ocean without bubbles; the dashed black line represents the
numerical data for the ocean with bubbles.
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300 ms duration sonic boom). the top bubble layer is most likely invisible to the incoming
waveform. The underwater pressure field is only minimally affected by the bubble layers,
the deeper bubble layers for the 30 knot wind case showing slightly greater changes than
the 20 knot wind case. Studying changes in sound at several depths for each of the two
runs. the largest effect on sound level is found to be less than 1 dB. This indicates that the

effects caused by the flat bubble layers are negligible.

8.3. Bubble Plume Model: Computational Simulations

8.3.1. Computer program

Again the computer program used for the computational simulations in Chapters 6 and
7 is also used here. In addition. the layered bubble plume is included in the code. Similar to
the flat bubble layer model. the bubble plume model applies the interface finite difference
scheme at the ocean surface and between each of the bubble layers. The refined grid region

envelopes the entire bubble plume.

8.3.2. Program runs

Two runs of the program including the bubble plume model were made in order to help
assess the impact bubbles have on an impinging sonic boom waveform. For the sonic boom,
the peak pressure is again 50 Pa and the duration 300 ms: the Mach numbers applied are
1.4 and 2.4. For this bubble plume model, a computer simulation of the more extreme
wind speed. 30 knots. was performed. As in the flat bubble layer model runs, the ocean
surface is flat. Table 8.3 presents the bubble layer parameters used for the 30 knot runs.
Each bubble layer has an associated thickness at the location of the bubble plume. As
before, the maximum depth. the total of all thicknesses added together, is approximated
using Eqgs. (8.2) and (8.3); using these equations, the maximum depth of the bubble plume
should be about 10 m. For the bubble plume model, the maximum depth is actually 10.5
meters; there is a good reason for this. The bubble layers in the bubble plume model are

closely packed everywhere except at the bubble plume location, as seen in Fig. 8.4. These
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compacted layers are limited in closeness by the vertical grid spacing, 0.25 m in this refined
region. Since each layer has at least a 1 m thickness (a limitation for this model) in the
plume and there are six layers. the total depth would be the sum of the 6 thicknesses plus
0.25 times the number of layers: total depth = 9+ 1.5 = 10.5 m. The speed of sound is

calculated using Eq. (8.5). and the density is the same in all cases.

Table 8.3: Bubble plume model parameters for 30 knot wind: ¢, is the
speed of sound. and p, is the density.

layer bubble layers for 30 kn wind case
number | thickness (m) |c, (m/s) {p, (kg/m?)
1 1.0 841 1000
2 1.0 1214 1000
3 1.0 1375 1000
4 1.0 1466 1000
5 2.0 1483 1000
6 3.0 1497 1000

8.3.3. Effects caused by bubble plume in ocean

The full two-dimensional computational domain for the Mach 2.4 case is shown in
Fig. 8.8: this figure includes the intensity vectors in order to see if the bubble plume is
warping the shape of the evanescent field. The thick white horizontal line is actually the
collection of lines representing the ocean surface and the bottom of each bubble layer:
although difficult to see. these lines separate near the middle of the domain to form the
bubble plume (indicated by an arrow). As before, the dashed white lines enclose the refined
grid region. Even though Fig. 8.8 shows just a snapshot in time, it is clear from tracking
the waveform over time that the sonic boom penetrates as an evanescent wave, the field

relatively unaffected as it passes over the bubble plume.
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Figure 8.8: Mach number 2.4, flat ocean surface, one bubble plume,
pressure and intensity fields; incident wave interacting with the air-water
interface; t = 0.75 s.
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The smaller Mach number calculation was performed in order to determine whether or
not a sonic boom with a shorter horizontal effective wavelength would more easily penetrate
the narrow opening of the bubble plume. A run was performed with a Mach 1.4 sonic boom.
The results still indicate that the evanescent field is relatively unaffected by the bubble
plume. Table 8.4 presents percent changes from the flat homogeneous ocean results (found
in Chapter 6) caused by the bubble plume. The results at several depths are shown. The
results indicate that most of the changes in peak pressure are less than 1%. The maximum
percent change. the same as for the flat bubble layer model, is at the 128 m depth. a
magnitude of 6.02% for the Mach 1.4 case and 5.54% for the Mach 2.4 case; the changes in
pressure (Pa) are also given for these cases just to show how little the pressure is affected.

These percent changes correspond to only 0.5 dB changes.

Table 8.4: Percent change in peak pressure from ocean without bubbles
caused by the bubble plume; Mach 1.4 and 2.4. 30 knot wind case.

depth % difference caused by bubble plume
(m) +/— peaks
M=14 M =24
0 0.01% / 0.00% 0.02% / 0.01%
4 0.00% / 0.01% -0.01% / 0.03%
8 -0.01% / 0.01% -0.01% / 0.06%
16 -0.02% / —0.02% —0.06% / —0.15%
32 -0.07% / —0.04% -0.21% / —-0.37%
64 -0.57% / —0.47% -0.80% / 1.10%
128 -6.02% / —3.64% —5.54% / 3.46%
(—0.13 Pa / 0.16 Pa) (—0.51 Pa / —0.41 Pa)
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8.3.4. Discussion of results

Computational simulations including the bubble plume model and a flat ocean surface
indicate that the sonic boom noise penetrates the ocean surface only as an evanescent wave.
The underwater pressure field is only minimally affected by the bubble plume both for the
Mach 1.4 and Mach 2.4 cases. Examining several depths for the two runs. the largest change
in sound level is less than 1 dB. This indicates that the effects caused by the bubble plume

are negligible.

8.4. Summary of Overall Results for an Ocean with Bubbles

This chapter focused on the effect of ocean bubbles on an impinging sonic boom wave-
form. Accessing a wide array of literature. models for the ocean bubbles were formed, the
simplest model being flat bubble layers and a more complicated model being a single bubble
plume. These models became features in the existing finite difference code. Simulations
were performed for each of the models: results indicated that ocean bubbles do not allow
the sonic boom to penetrate the ocean as a propagating wave but rather just an evanescent
wave. The bubbles only negligibly affect the pressure values in the evanescent field, the

magnitude of the maximum change being less than 1 dB in sound pressure level.
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Chapter 9.
Verification of Results

The method applied for computationally producing the results found in Chapters 6. 7.
and 8 can be verified through numerical accuracy and differences in the initial waveform.
Chapter 6 provided some verification by making comparisons to known analytical theories
and corresponding analytical/numerical models where trends in the underwater pressure
field were duplicated; the current chapter provides further validation for the computational
method and the results produced. Since the finite difference scheme used over the majority
of the grid (the air/water scheme) was 2nd-order accurate, a 4th-order accurate in space
scheme is applied to the computational domain in this chapter to check the accuracy of
the solution. Also. the initial waveform used in the program was a rounded sonic boom:
here a more N-shaped sonic boom replaces the rounded one to see if this makes much of a

difference in the calculated underwater pressure field.

9.1. Fourth-Order Finite Difference Simulations

To check the accuracy of the 2nd-order finite difference code. the results are compared
to that of a {th-order accurate in space finite difference code. This section will present the
derivation for a 4th-order scheme for both a uniform and nonuniform grid. This scheme
is then implemented in the air/water wave propagation simulations, and the 4th-order

accurate results are then compared to the 2nd-order accurate results.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



146

9.1.1. Derivation of fourth-order finite difference method

The 4th-order centered finite difference approximation for a uniform grid starts with

four Talyor series expansions.

p(z +2A7) = p(z) + 2A1p, (z) + fx) Pz (7) + (Qﬁf)apm( )+ (A4—:z:)P:(zn)(T)
+ (?'A;’) 22 (@) + (‘—%”—pz(m (2)+-.. . (9.1a)
p(z+ Az) = p(z) + Azp; (z) ‘A"fz —pzz (T) + 3f3pm( ) + A4_f4pz(u') (z)
A @)+ A e D)+ (9.18)
p(z — Azr) = p(z) — Azp, (r) + Az—!zpn (z) - A:‘;—'fspm (z) + A,Tf‘pzm) (z)
- AS—fspm-) (z) + A6_I'Gpr(v,, () —.... (9.1c)
(e ~280) = p(a) ~ 250, (1) + B3 () - BRI,y 2 ﬁx) Sl b @)
- Q_Z;f_)pm-) () + 2220 21,) —ar Pzt (T) — (9.1d)

In addition to suppressing the arguments. the following variable representations will be

applied throughout the remainder of the derivation:
p(z £ 2Azx) = pizo
pP(z£AZ) =pusy (9.2)
p(z)=p, .

Adding together Egs. (9.1a) and (9.1d) gives

‘ 16Az! 128Az°
Pi+2 T Pi—2 = 217: + ‘lAl‘-)pz.t + Tpr(w) + TPI(W) +... 0, (9-3)
and adding together Eqgs. (9.1b) and (9.1c) gives
s ALt 2AZ®
Div1 +Dicy = 2Pz + AI"P:: 12 ——P:z(w) + 6! Q7 Pzr(er) + . . (94)

Multiplying Eq. (9.4) by -16 then adding the result to Eq. (9.3), the formulation becomes

96A

Pus2 — 16p,yy — 16p,_1 + po—2 = —~30p, — 12A2°p,, + —

P:(m) + ... . (95)
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Solving for the second derivative. Eq. (9.5) is written

1 Art
].QA.’L‘)' (_pz+2 + 16pz+l - 30?; + 16P:-—1 - p:—?) + pr(m) +... . (96)

Dzr =

This approximation matches that in Ref. 25. So the 4th-order centered finite difference

formulation for a uniform grid is

Dz: (_pH—'.’ + 16pl+l - 30px + 1617:—1 - pt—'l) +0O (A$4) . (97)

T 12A77

This 4th-order derivative approximation is applied only to the spatial derivative in the z

direction.

The 4th-order centered finite difference approximation for a nonuniform grid also starts

with four Talyor series expansions.

LAz + Az )

Plz+ Az + Az = p(2) + (Az)n + Az, 00) p: (3) 2! Pe: ()
LBz -;!Azj+l)3p::: (z) + (82542 :!Az’+l)4p:(u-, (2)
LAz ;Az,ﬂ)smv)(:)ﬂkm . (9.8a)
plz+ Az ] = pl2) + Az, pup. (2) + (A};,“)p (=) + ‘—Azg%":‘p::z (2)
+ ———(A:i;’[fp;(,v) (=) + ——(A:';;I)S s (2) + (9.8b)
plz = Az =p(z) = Azp. (=) + (A;’)2P== (z) - %vi" (=)
+ (A;j)4p:(zu) (2) - (—/é;%)ip:(c) () +.... (9.8¢c)
Pl —(Az;+ Az, )] = p(2) = (Az; + Az,m1) p: (2) + = +2!Azj_l)2p:: (=)
-2 +3!AZJ-X)320:;: (=) + 22 +4!A2,-_1)4p:(w) (2)
(A +5!Az,»_1)5p:(u)(:) . (9.8d)

Recall that Az; = z; — z,_,. z, being the physical location at index j on the grid: knowing
the grid location is necessary for Az since the refined grid region has smaller spacing than

the rest of the computational grid. In addition to suppressing the arguments, the following
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variable representations will be applied throughout the remainder of the derivation:

Pl +(Aza + Az 00)] = piso a=Az,0=2z00— 24
plz+ Azl =pn b= Az =20 — 3
plz=— Az =p_, c= Az, =z, -z, (9.9)
plz—(Az, + Az, )| = p;-2 d=Az; =z, — 2,
p(z)=p;.

Multiplying Eq. (9.8a) by (¢ + d) and Eq. (9.8d) by (a + b) then adding the two results

1

together and multiplying by T gives
Dj+2 Pj-2 _a+b+c+d +(a+b)+(c+d), +(a+b)2—(c+d)2
(@+b)  (c+d) (a+b)(cxd)”” o Pz 3! Pzz:
(a +b)’ + (c + d)* (a+b)* = (c+ad)?}
+ 1 P:(1v) + 51 ) P:(v) +...

(9.10)
Multiplying Eq. (9.8b) by ¢ and Eq. (9.8¢) by b then adding these two results together and
multiplying by ;- gives

P _b+ec b+c b* — c? b+ * bt — ¢t

Pj+1
. + b, + Tp:: + '3_!19::: + —4!_p:(n.-) + —5!—Pz(u) + ...
(9.11)

b c  be

Now left with two equations. Eqs. (9.10) and (9.11), it is possible to combine them to get
and Eq. (9.11)

one equation, the nonuniform derivative. Multiplying Eq. (9.10) by —=1—
by ;f—c, performing minor manipulations. adding these two results together, then solving for
Pp::. the expression for the dth-order centered finite difference approximation of the second

derivative can be stated as

p.. = 2 [*P;+2+P;+—P;—2 +P;] 3 [PJ+1—PJ+P]'—1—P1]
¥ 3(a+b+c+ad a+b c+d 3(b+c) b c
la+b)’=(c+d)?® 4.,
+[9 a+b+c+d g(b c)p:::'
(9.12

It is possible to check this scheme by letting a = b =c = d = Az; Eq. (9.12) then collapses
down to the uniform grid derivative, Eq. (9.7), except the difference in variables ( z instead of
z). This 4th-order approximation for a nonuniform grid is applied only to the z derivative.

Now the total 4th-order air/water scheme (4th-order in space, 2nd-order in time) is

presented:

Pt =2pt =iyt + 2 (A)? [pex + P (9.13)
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where
l
Pzzr = m (—pH-'..’._) + 16p:+l.,} - 3Opl._] + 16pi-—l._; - Pz-‘l.]) .
Ps: = 2 [ —Di +2 +px.1 —Di.j-2 +P:.j} (9 14)
o 3(AZJ+2 +AZJ+1 +A3] +AZ_,_1) AZJ+'_)+A:J+1 AZJ +AZJ'_1 :
+ 8 [pl._]‘."l — Py + Dij—1 — pz._;]
3(A:J+l + AZJ) A:j*'rl AZJ

9.1.2. Implementation into computer program and runs performed

Equations (9.13) and (9.14) form the finite difference scheme applied in the air and
water sections of the computational domain, the majority of the grid. The finite difference
scheme applied at the interface is still Eq. (5.25). the scheme derived in Chapter 5. The
new 4th-order scheme is coded in Fortran. the new subroutine sochdiff2d can be seen in
Appendix D. Besides this subroutine the rest of the code is similar to that with 2nd-order
accuracy.

Several runs were performed in order to compare the 2nd-order accurate and 4th-order
accurate results. First, the air-water interface was placed near the bottom of the rectangular
domain so that the sonic boom could propagate through a homogeneous medium without
interruption. Two runs were executed in this state. the first with the 2nd-order code and
the second with the 4th-order code: in both cases. the Mach number was 2.4. the peak
pressure of the sonic boom was 50 Pa. and the duration of the sonic boom was 300 ms. The
goal here was to find out if the waveform was dissipating at different rates for the different
accuracies. Then the interface was placed back in it’s original position, 340 m from the top
of the domain. Two more runs were performed, both 4th-order accurate but now with a
flat ocean surface and a trochoidal surface profile of wave height 3.75 m. This second set
of runs was necessary to see if results changed with the interface involved.

It should be noted that the 2nd- and 4th-order runs were all performed on the same
grid. Although one benefit of 4th-order codes is their ability to use a coarser grid compared
to 2nd-order codes, the intent here was to check the accuracy of the existing 2nd-order code.

not to decrease the run times.
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9.1.3. Results

In order to compare the different dissipation rates of the 2nd-order accurate propagation
and the 4th-order accurate propagation, the two runs with the interface moved near the
bottom of the domain are examined. Results indicate that over a 100 m distance the 2nd-
and 4th-order accurate schemes have each decreased in peak pressure by at most 0.008 Pa.
This implies that not only are they dissipating at the same rate. but the rate of dissipation
is negligible.

Next, with the interface back in place, the 4th-order accurate flat water run is compared
to the 2nd-order accurate flat water run. described in Chapter 6. and the 4th-order accurate
3.75 m wave height trochoidal profile run is compared to that of second order in Chapter 7.
For the first set of runs. simulations involving the flat ocean surface. values are extracted
just under the ocean surface and at a depth of 100 m. For the second set. simulations
involving the wavy ocean surface. pressure values are extracted only from just under the
surface. Table 9.1 presents the largest percent changes between pressure values. The percent
changes were calculated as 100 X (Pitho — Pando)/Pando- All of the differences were less than

2%. but the changes are slightly higher for the run involving ocean surface curvature.

Table 9.1: Percent change in peak pressure comparing the 2nd- and 4th-
order accurate wave propagation schemes: Mach 2.4. flat ocean surface and
wave height of 3.75 m.

depth % change in +/— pressure peaks
(m) H=00m H=375m
0 0.7% / 0.8% 1.8% /—1.9%
100 1.1% /—0.9% —

Since the waves dissipate at the same rate through a homogeneous domain, any percent
difference between the 2nd- and 4th-order accurate simulations involving the two media

must occur at the air-water interface. Perhaps the way the two different order accurate
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schemes interact with the separate interface scheme is the cause of the small discrepancies.
and the curvature just enhances the effect. In any case the accuracy difference in sound
level is far less than 1 dB.

One more thing should be noted about the 2nd- and -ith-order accurate codes running
on the same spatial grid (800 x 800 grid points). The user CPU time for the 2nd-order
accurate code was on average 2:35:47 (hours:minutes:seconds). whereas for the {th-order
accurate code it was 3:28:49: again, all runs were performed on a Digital Equipment Corp.
Alpha 3000/600 workstation. This is a difference of 0:53:02 CPU time. a time savings enough
to make the 2nd-order code more attractive than the 4th. especially since the difference in

accuracy seems to be negligible.

9.2. A More N-Shaped Waveform

The initial waveform for the simulations in Chapters 6-8 was a rounded sonic boom: as
was seen in Chapter 2, actual sonic booms vary from an almost perfect N shape to a rounded
N. A rounded sonic boom was chosen for the simulations because it lacks the discontinuities
found in the shocks of a perfect N wave. It is here the goal to find differences, if any.
by replacing the rounded sonic boom waveform with one that is slightly more N shaped.
In doing this. it could show the code’s flexibility in the shape of the initial waveform and
whether or not the results with the rounded waveform are a good approximation to those

that would be found using a different sonic boom shape.

9.2.1. New waveform

The more N-shaped sonic boom is calculated by multiplying a straight-line function.
Egs. (6.1) and (6.2), by an appropriate window. The desired waveform is one in which there
are still no sharp discontinuities but the waveform appears more N-like than the rounded

N wave. The window applied. constructed specifically to get the desired waveform, is

1 [¢} < 0.6 (cT)
window (z. 2) = 0.152 + 1.37 cos [I'Zi“] 0.75 (c7) > |¢| > 0.6 (cT) (9.15)
' 3.9 cos? [%ff)] er 2 |¢] > 0.75 (eT) ’
I¢l > er
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Where the variables are the same as in Chapter 6: ¢ is the position on the computational
grid. c is the speed of sound in air, and 7 is half the duration of the sonic boom. This
window appears in Appendix E as the Fortran function w2. This function is applied instead

of the w function in the main code in Appendix B. The initial pressure p,,, is then
Dinat (x.2) = 1.5 (line) x 1.107 (window) . (9.16)

The straight line. personalized window. and the resulting more N-shaped wave appear in

Fig. 9.1.

Figure 9.1: A more N-shaped sonic boom waveform than the rounded
waveform in Fig. 6.1 and the functions used to construct it. These are
plots of pressure as a function of space.

9.2.2. Computer program runs

Two runs were performed using this new initial waveform: the Mach number was 2.4.
the peak pressure of the sonic boom was 50 Pa. the duration of the sonic boom was 300
ms, and a flat ocean surface and one with a trochoidal profile of wave height 3.75 m were
applied. The flat surface run is compared to a simulation in Chapter 6, a rounded sonic
boom interacting with a flat surface. The wavy ocean surface run is compared to one made
in Chapter 7, a rounded sonic boom interacting with a wavy ocean surface with a trochoidal

surface profile and a wave height of 3.75 m.
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9.2.3. Results

The first set of results is shown in Table 9.2: these are the results for the flat ocean
surface. Here the positive and negative peak pressures are compared for the run with the
more N-shaped waveform to the one with the rounded sonic boom. In addition to examining
the pressure values just under the surface, results are extracted from depths of 4, 16, and
64 m. The difference in pressure values are represented in three forms—pascal difference,
percent difference. and sound level (peak dB) difference—in order to properly understand
the percent changes at the greatest depth. Table 9.2 indicates that the greatest percent
difference, 9.2%. is at 64 m. but this corresponds to only a 2.51 Pa difference or 0.8 dB
(peak pressure level) difference. not a significant amount. It should be noted that the peak
pressures of the initial waveforms are also slightly different: neither waveform has a peak
pressure of exactly 50 Pa. as this is just the approximation. The difference in sound level
of the initial waveform is actually about 0.1 dB: applying this to Table 9.2 would decrease
the dB difference. Regardless of whether or not the small error is involved. it is determined
that less than 1 dB in the peak pressure sound level is insignificant. This implies that the
rounded N wave model is actually a good representation of at least one other sonic boom

shape. quite likely other shapes as well.

Table 9.2: Changes in peak pressure (pascal. percent. and decibel) com-
paring the more N-shaped sonic boom runs to the rounded sonic boom
runs: Mach 2.4, flat ocean surface.

depth difference between more N and rounded N
(m) (more N - rounded N) +/— peak pressures
Pa difference % difference dB difference

0 4.67 / -2.01 4.8% / 2.1% 0.4/0.2

4 2.04 / —-0.69 2.3% / 0.8% 0.2/0.1

16 0.23 / -0.57 0.3% / 0.7% 0.0/0.1

64 1.58 / —2.51 6.0% / 9.2% 0.5/0.8
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The second set of results is shown in Table 9.3; these are the results for the wavy ocean
surface, wave height 3.75 m. The wavy surface results were here calculated to determine if
the underwater pressure field with the focusing/defocusing at the surface is altered much by
the shape of the initial waveform. Only the negative peak pressures are compared for this
second set of runs. Since the curvature of the ocean surface focuses/defocuses the incoming
waveform. several snapshots in time were examined in order to find just one snapshot for the
more N-shaped wave simulation and one snapshot for the rounded N-wave simulation where
either the positive peak pressure or negative peak pressure of the sonic boom waveform
matched closely in value just under the surface. A fairly close match was made with the
negative peak pressure: the positive peak pressures in this case were not at all matching.
and this is why only the negative peak pressure results are shown in Table 9.3. Once the
values were matched at the surface, several depths for each case could be examined.

As before. the difference in pressure values are represented in three forms: pascal dif-
ference. percent difference. and sound level (peak dB) difference. Table 9.3 indicates that
the greatest percent difference. 8.5%. is at 64 m, but this corresponds to only a 2.35 Pa
difference or 0.7 dB (peak pressure) difference. not a significant amount. Again, it is deter-
mined that iess than 1 dB in the peak pressure sound level is insignificant; the rounded N

wave model seems to be a good representation for other sonic boom shapes.

Table 9.3: Changes in negative peak pressure (Pa. %. dB) comparing the
more N-shaped sonic boom runs to the rounded sonic boom runs; Mach
2.4, 3.75 m wave height. trochoidal profile.

depth difference between more N and rounded N
(m) (more N - rounded N) neg. peak pressure only
Pa difference % difference dB difference
0 -0.27 0.2% 0.0
4 ~0.60 0.6% 0.1
16 1.92 -2.6% -0.2
64 -2.35 8.5% 0.7
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Tables 9.2 and 9.3 reveal that the underwater pressure fields obtained using a rounded
sonic boom as the initial waveform are a good approximation to results that are obtained
using a more N-shaped waveform. The simulation code is flexible in allowing different initial
waveforms. Moreover, a rounded sonic boom seems to adequately represent at least one

other waveform in simulating a sonic boom interacting with the ocean.

9.3. Summary of Verifications

By implementing a 4th-order accurate in space finite difference scheme in the computer
code, the simulation results indicated that the 2nd-order accurate code is sufficient and
preferred for the present studies. The 4th-order accurate solutions were less than 1 dB
(peak pressure level) different from the 2nd-order accurate solutions, and they took 34%
more user CPU time on the same grid. The runs made with a more N-shaped sonic boom
waveform revealed that the rounded N wave simulation results were a good approximation
to at least one other shaped waveform; the calculated percent changes and trends found in

this work would most likely apply to other initial sonic booms as well.
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Chapter 10.
Discussion and Conclusions

10.1. Summary

This dissertation has introduced concepts. provided literature reviews, given deriva-
tions. and described computational simulations of sonic booms interacting with a realistic
ocean surface. The research for this work was motivated by a proposed high speed civil
transport (HSCT) expected to fly supersonically over the world’s oceans early next century.
The sonic booms generated by these aircraft are an environmental concern. the noise po-
tentially affecting marine mammals. The underwater sound caused by an HSCT-generated
sonic boom was here calculated in order to quantify the sound levels which may be heard
by marine mammals. As previous work has addressed the issue of sonic booms impinging
upon a homogeneous ocean with a flat surface, this research accounts for the curvature of a
wavy ocean surface and bubbles near the surface and the effects on the underwater sound
that these realistic ocean features cause.

Chapter 2 reviewed sonic boom concepts, information extracted from books and articles
that cover this topic. It was explained how a sonic boom is formed, starting with the initial
disturbance at the airplane then the waveform’s propagation through the atmosphere. A
description of the sonic boom ground intercept and its associated noise was given along
with illustrations of the waveform. Also, the underwater pressure field associated with a
sonic boom impinging upon the water’s surface was examined; conditions were given for the
impinging waveform to penetrate the surface as a propagating wave versus an evanescent
wave. For the proposed HSCT. it was concluded that the underwater pressure field was
evanescent.

Literature concerning sound penetration from air into water was reviewed in Chapter
3. Initially. articles involving a general sound source in the air and its reception in the
water were summarized. This was followed by reviews of articles that deal specifically

with the sonic booms as the air source: historical applications involving analytical theories
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and experiments and recent applications involving analytical and numerical theories and

experiments were reported in these reviews.

Chapter 4 addressed the issue of underwater sonic boom noise. This chapter started
by explaining the motivation to understand the underwater sound, summarizing the envi-
ronmental concerns involving marine mammals. A description followed of the sound levels
and a review of the recommendations for which sound metric to apply when describing a
sonic boom. Applying several noise metrics, most being weighted for the hearing of humans
rather than calculating a purely physical quantity. the underwater sound levels were numer-
ically calculated using known analytical equations for the pressure values. As a result, the
evanescent wave due to a sonic boom impacting a flat surface was analyzed. The fall-off
of decibel levels for a broad range of metrics were presented as a function of depth, the
results indicating that the high frequency content in the sonic boom decays rapidly. At the
surface the sound level is approximately 94-131 dB re 20 pPa (120-157 dB re 1 pPa) where
the initial sonic boom in the air has a 50 Pa peak pressure and a 300 ms duration: the
exact decibel value depends on the metric applied. The sound level decreases over 40 dB
for weighted metrics and about 13-18 dB for unweighted metrics at a depth of 128 m. Pre-
vious work looked only at the underwater pressure values or peak dB; this work calculated
several descriptions of the underwater sonic boom noise. possibly giving a better idea of

how marine mammals might hear the sound.

Chapter 5 explored the computational aspects of the simulations involved with the
bulk of this research. After a brief outline of how to choose a computational method. the
chosen finite difference method was formulated; two separate finite difference schemes were
derived. The scheme applied to the air and water consists of a basic two-dimensional cen-
tered finite difference representation of the acoustic wave equation; the known horizontal
derivative was easily derived. while deriving the vertical derivative, which accounts for a
nonuniform grid. was slightly more difficult and is only sparsely shown in Ref. 25. The
interface scheme derivation followed that in Ref. 56, an article from the geophysics commu-
nity. and Ref. 59, although it was expanded here to account for a nonuniform grid in the
vertical direction. Adding this special interface scheme allows a simulation to be performed
with very large impedance changes in a computational domain, such as air to water. The

combination of these air/water and interface finite difference schemes is unique to studying
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sonic boom/ocean interaction and is essential for successful simulations. Known boundary
conditions were also derived: a hard reflecting boundary applied to the left, top. and right
sides of the computational domain was described along with an absorbing boundary applied

to the bottom. Chapter 5 concludes with a stability analysis on the finite difference method.

The first results of the computational simulations resided in Chapter 6. As a check
for the program’s validity. the simulations in this chapter involved a homogeneous ocean
with a flat surface. The initial waveform. a rounded sonic boom. was here formulated
and illustrated. After listing the runs performed. the first full-field pressure results were
graphically presented. The calculation of the intensity as a function of pressure was then
introduced. equations derived mimicking an intensity probe analysis. Simulation results
were then shown with the intensity vectors superimposed on the pressure field. Runs were
performed which verified that the computer simulations correctly represented the physical
problem: the sonic boom waveform penetrating the ocean surface was seen as an evanescent
wave and a propagating wave. each case apparent when physics demanded it. The final
section of Chapter 6 compared the simulated flat water results to previous theories. The
theories of Sawyers®® and Cook'? were shown to apply to the simulations in that an evanes-
cent wave was seen when the supersonic airplane was flying at a speed less than Mach 4.4.
A quantitative comparison of the underwater sound level decay as a function of depth for
the computational simulations to that for two analytical/numerical methods (one based on
Sawyers’ theory and one based on Cook’s theory) showed that the decay rate of the evanes-
cent sonic boom is approximately the same for each. Sparrow’s conclusion® that larger
Mach numbers are associated with greater penetration into a flat ocean was quantitatively

verified in this chapter’s simulations.

Chapter 7 went beyond a homogeneous ocean with a flat surface; it included com-
putational simulations for a homogeneous ocean with a wavy surface. The concepts of
wind-generated ocean waves and sonic booms interacting with these waves were discussed.
Analytical formulations were given for ocean surface profiles with simple curvature and
more complex curvature; the ocean wave parameters were chosen after investigating many
sources. Several different wavy ocean surface profiles were successfully introduced into the

code, some requiring special filters in order to maintain numerical stability. The results
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qualitatively showed that as the sonic boom impinges upon a wavy ocean surface. its en-
ergy is focused in the ocean wave troughs and defocused over the ocean wave crests. The
sonic boom was seen to penetrate the surface of the water as an evanescent wave, not a
propagating wave. For a simple ocean surface, the results for a 50 Pa peak pressure, 300
ms duration sonic boom quantitatively showed that the peak pressure was changed at most
11.7% from the flat ocean surface results. the peak pressure sound level being augmented
only 1 dB by the surface curvature. Two trends were discovered: 1.) increasing wind wave
heights strengthens the focusing and defocusing of the evanescent pressure field. and 2.)
increasing the Mach number strengthens the focusing and defocusing effects. It was also
learned that the effects of curvature on the underwater pressure were stronger near the

ocean surtace than at greater depths.

Also in Chapter 7 an ocean surface with a complex profile revealed the largest effect due
to curvature to be an 11.2% increase in peak pressure: this corresponds to less than 1 dB
in sound pressure level. The first trend found with the simple surface was confirmed in the
complex surface simulations. but the second was not. This inspired a study of wavelength
comparisons, sonic boom effective wavelength to the wavy ocean surface wavelength. to
find their relation to the effects due to curvature. This comparison provided a tool to help
predict the magnitude of the effect due to simple curvature. The most significant effects
were associated with the sonic boom effective wavelength being on the order of or less than
the ocean surface wavelength. It was determined that this tool could not be applied to a

complex surface. and that cach complex case should be individually treated.

Chapter 8 also went beyond a flat homogeneous ocean. This time ocean surface waves
remained suppressed and ocean bubbles were included. Concepts of ocean bubbles and their
models were discussed. Two bubble models were successfully formulated, parameters chosen
as a result of the information found in many sources. and implemented in the computa-
tional simulation. The first bubble model consisted of flat layers; each layer had a different
sound speed. the lower speeds near the ocean surface and then increasing with depth. The
second model consisted of one bubble plume also with layers. Results using both models
indicate that the sonic boom penetrates the ocean surface only as an evanescent wave. and
that bubbles only negligibly affect the pressure values in the evanescent pressure field, the

magnitude of maximum change being less than 1 dB in sound pressure level.
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Verification of the computational method and its results. beyond what was given in
Chapter 6, was provided in Chapter 9. A 4th-order accurate finite difference scheme was
derived here. Derivations for the known horizontal derivative (uniform grid) and for the
vertical derivative (nonuniform grid) were presented: the {th-order accurate formula for a
derivative on a nonuniform grid involved a rather complicated derivation. the derivation
and the solution not readily available in the literature. Results using a 4th-order accurate
finite difference scheme indicated that the 2nd-order accurate code for a fixed spatial grid is
sufficient and preferred to solve the sonic boom/ocean interaction problem. Less than a 1 dB
difference in peak sound pressure level did not justify implementing the “more accurate”
scheme which used up to 34% more CPU time than the 2nd-order accurate simulations.
Runs made with a more N-shaped sonic boom waveform revealed that the rounded N wave
simulation results are a good approximation to at least one of several alternate sonic boom
shapes. Chapter 9. in addition to Chapter 6. confirmed that the methodology implemented
in this research and the corresponding results provide a valid analysis of a sonic boom

interacting with the ocean.

10.2. Revisiting the Basic Problem

Studying the effects that realistic ocean features have on an impinging sonic boom
has revealed that the sonic boom itself is the noise source of concern; any underwater
noise augmentation due to curvature on the ocean surface or bubbles beneath the surface
is a minor effect. This returns us to the basic problem: a sonic boom impinging upon
a homogeneous ocean with a flat surface. Having equations for calculating the acoustic
pressure as well as having an understanding of the frequency content as a function of depth
are important to analyzing the underwater sound field.

As was stated in Chapter 3. analytical theories involving a homogeneous ocean with
a flat surface (also assuming the airplane is traveling at a speed less than Mach 4.4) were
developed by Sawyers®® and Cook.'? Equations were formulated for pressure as a function
of depth. the underwater acoustic disturbance being an evanescent wave. The underwater
sonic boom noise was found to be a function of the sonic boom parameters (Mach number,

peak pressure, duration) and the sound speeds in each medium.
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In addition to the known equations for calculating the waveform. the frequency content
can be analyzed. At the ocean surface, sonic booms vary in shape. some approximating an N
wave. some having sharp high-pressure peaks, and some forming a rounded N wave, among
other shapes. As these waveforms decay underwater, they quickly lose any sharpness in their
shapes; their amplitudes decay with depth. and the duration lengthens. Examples of these
decaying waveforms were shown in Chapter 6. Fig. 6.10. For a single frequency. the sound
field decays as e~!I1*/™_ where w is the angular frequency. : is the depth. and m is a function
of the speed of the aircraft and the speed of sound in the ocean (please refer to Eq. (3.1).
Sawyers’ equation); this decay is also found in Eq. (2.6). the expression for the underwater
evanescent pressure field for an incident plane wave of constant frequency. Regardless of the
waveform shape, the frequency dependent exponential decay implies that higher frequencies
decay more rapidly than the lower frequencies. as was discussed in Chapters 2, 3. 4. and 6.

The work described in Chapter 3 was heavily based on the simple two-fluid interface
problem studied in introductory acoustics courses. It is somewhat remarkable after all the
effects of bubbles and variations in ocean surface profiles have been accounted for that the
theory based on the simple two-fluid interface does an excellent job of describing the sonic
boom penetration into the ocean. The flat, homogeneous ocean model should be sufficient
for most engineering predictions of the sonic boom underwater pressure field.

Using Eq. (3.1) developed by Sawyers or Eq. (3.2) developed by Cook. it is possible to
calculate the pressure field as a function of depth: hypothetical HSCT parameters can be
used as the input variables. A description of this underwater sonic boom noise. however.
requires further analysis. If interested purely in the frequency content and not in the fea-
tures of an incident waveform's shape, it is possible to follow the decay of each frequency
component as a function of depth (please refer to Eq. (2.6)). Also. Chapter 4 explained
metrics for describing the noise. some of the metrics revealing the changing frequency con-
tent and how the sonic boom might be perceived at various depths under the ocean. The
methods in Chapter 4 can be applied to better evaluate the overall sonic boom noise for

determining the impact on animals.
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10.3. Limitations of the Computational Analysis and Suggestions for
Future Work

Although this research has successfully investigated the effects of realistic ocean features
on sonic boom noise penetration into the ocean using a two-dimensional simulation, there
could be improvements to the code. One improvement would be an upgrade in the number of
dimensions. Although this author believes that a three-dimensional simulation is not crucial
in finding the strongest effects of wind-generated waves on an impinging sonic boom., at least
one other author®™'° has raised the issue that there may be some three-dimensional effects
when solving the problem. The simulation code developed for this research can be upgraded
to three dimensions: this could be a time-consuming task. especially since the code should

then be written to run in parallel.

To also improve the simulation code. the boundary conditions could be upgraded. As it
stands. the computational domain has three hard reflecting boundaries and one absorbing
where it was absolutely crucial. All results had to be extracted from areas of the domain
where reflections were not interfering with the solution. The part of the domain not con-
taminated by reflections could be expanded by applying absorbing boundary conditions all
around. Another improvement involves the wavy ocean surface: as it stands in the simula-
tion code, it is grid-block approximated. This limits the complexity of the surface profile.
as was experienced when trying to implement a statistically generated ocean surface. To
overcome the obstacles placed by the grid-block approximation. the grid could actually be
warped in the air/water interface region such that the ocean surface is not ragged but rather
a smooth curve. Another improvement to overcome instabilities due to the grid-block ap-
proximation might involve added dissipation. By adding dissipation to the finite difference
schemes, it may be possible for the code to handle a ragged surface without applying any

“smoothing” filters.

Otbher issues could be addressed with additions to or adaptations of the simulation code.
One issue that might be addressed is finding effects on the underwater sonic boom noise
due to structures. It is thought that when a sonic boom hits an object on the ocean surface,
a ship. for example, this object will vibrate and radiate noise into the water. It may be

possible to include such structures in the existing code and conduct simulations to determine
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the underwater pressure field. Adapting the computer code. many other problems could be
studied. Such problems might include the reciprocal of the one studied here: an underwater
sound source and its reception in the air. The code could also accommodate different media.
also with large impedance changes, or other interfaces that possess curvature: the ocean
floor may be a good candidate if the proper equations are applied. Modifications could also
account for nonlinear acoustic effects which would be present when a sonic boom is created
near the ocean surface. The initial waveform could be one generated by something other
than a supersonic aircraft. perhaps a missile or a helicopter. where underwater sound levels

or waveform shapes may be of importance.

10.4. Concluding Remarks

A realistic evaluation of underwater noise due to a sonic boom generated by the pro-
posed high speed civil transport in steady flight has been accomplished here through com-
putational analysis. The computational method was constructed by gathering information
from many different resources. crossing the boundaries of acoustics and extracting tools
from ocean engineering and geophysics. The results found here indicate that the primary
concern is the underwater noise from the actual sonic boom and not from any enhancement
caused by a wavy ocean surface or bubbles near the surface. The task remains for marine
biologists to determine if the predicted sound levels will affect marine mammals who happen

to reside in or travel through an area insonified by these sonic booms.
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Appendix A.
Mathematica Code for Weighted Sound Levels

Sound Level Functions:

Functions for N waves and Sound Exposure Levels

B Construction of N wave
Function Nwavefn is produces a line between 2 points

Nwavefn[t_,time_,press_] :=
((t-(time/251)) ((-press)-press))/(time) + (press)

This next function Nwave2 allows the input of the duration
and peak pressure of an N-wave
The output is a list of data points, each pt being (time,pressure ampl)

Clear[Nwave2]

Nwave2[duratn_,press_] := Nwave2pt =
Join[{{0.0,0.0},{(duratn/251),0.0}},
Table[ {t,Nwavefn[t, duratn,press]},
{t,(duratn/251),duratn+(duratn/251),(duratn/251)}],
Table[{t,0.0}, {t,duratn+(duratn/251),
duratn+(2 (duratn/251)),(duratn/251)}]];
NoSamples = 256;
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Function Nwavel inputs duration and peak pressure of an N-wave 170

then outputs a list of just the pressure values over time
This function should be used if you are going to do a Fourier transform
- ref pressure is for air

Nwavel[duratn_,press_] := {
duration = duratn;
deltat = duratn/251;
Nwavelpt =
Join[{0,0},
Table[Nwavefn[t,duratn,press],
{t,deltat,duratn+deltat,deltat}],
Table[0, {t,duratn+deltat,
duratn+(2 deltat),deltat}]];
pref = 20 10" (-6);
NoSamples = 255;
signaltime = duration + 2 deltat;
T = signaltime/NoSamples;
fs = 1/T;
deltaf = fs/NoSamples;}

B Fourier transform

Functions for changing pressure vs time to
unweighted pressure dB vs frequency (Hz)

Function fftlistPos produces a list including just positive frequencies

fftlistPos{list_] := {fftpressdB = 20 N[Log[l0,
((Abs[N[Fourier[list]]])/
(Sqrt([2] pref))]];
fftpos =
Table[fftpressdB[[i+1]],
{i,1, (Quotient[NoSamples,2]-1)}]
i}

Function fftcomplex inputs a list of peak pressures and takes the
Fourier transform

fftcomplex([list_] := {fftpressz = 20 N[Log[10,
((Fourier[list])/
(Sqrt([2] pref))]];
fftpos =
Table[{fftpressz[[i+l]]},
{i,0, (Quotient [NoSamples,2]-1)}]
i}
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Function invfft takes in a list of discete values, starting with zero
frequency value; it outputs a list of transformed values in time domain

invfft[list_] := {templist =
N[Abs[InverseFourier[list]]];
invfftlist = Flatten[templist];}

B Weightings
C weighting, ANSI S1.4 (1983)
weighting constants
fl1 = 20.598997;
£f2 = 107.65265;
£3 = 737.86223;
f4 = 12194.22;
f5 = 158.48932;
Kl = 2.242881 10~16;
K2 = 1.025119;
K3 = 1.562339;

C weighting for frequency f (attenuation in dB)

WC[f_] := {
10 Log[1l0,
(K1 £74) / ((£72+£1°2)~2 (£~2+£4°2)"2)]}

C weighting unweighted pressure dB (complex value)

Function dBCpolar attenuates the magnitude of the complex number
and creates a list of polar comlex numbers C-weighted

dBCpolar([list_] := dBClist =
Table[
(Abs[list[[i]]] +
WC[ (i deltaf)]) Exp[I Arg[list[[i]]]],
{i,1, (Length[list])}]

A weighting, ANSI S1.4 (1983)

A weighting for frequency f (attenuation in dB)

WA[f ] :=
10 Log[10,
((K3 £74) / ((£~2 + £2~2) (f~2 +
£3+2)))] + WC[f]

A weighting unweighted pressure dB (complex value)
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Function dBApolar attenuates the magnitude of the complex number
and creates a list of polar comlex numbers A-weighted

dBApolar[list_] := dBAlist =
Table[
(Abs[list[[i]]] +
WA[ (i deltaf)]) Exp[I Arg[list[[i]]]].,
{i,1, (Length[list])}]

® Converting dB and pressure values

changing dB into pressure

pressfromdB[list_] :=p =
N[{10~(1ist/20) Sqrt[2] pref]

changing peak pressure into dB

dBvalue[list_] := dB = 20 N[Log[1lO0,
(Abs[list]/(Sqrt([2] pref))]]

changing rms pressure into dB

dBvaluerms([list_] := dB = 20 N[Log[10,
(Abs[list]/pref)]]

H Manipulation function

Function Pos2Full:
changing positive freq valued list of dB vs freq back to pressure

vs pos and neg freqs; generates a list that can be transformed back
to the time domain

Pos2Full[list_] := {
presslist = pressfromdB[list];
revlist = Reverse[presslist}];
addlist = Conjugate[revlist];
list2xform = Join[presslist,addlist];

}

M Signal Level
use preSEL and SEL together or use SELtheorhalf

Function preSEL takes a list of dB values (can be weighted), finds the
maximum dB value, then makes a list of dB values including the
maximum value and 10 dB down before and after the max value in time
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pPreSEL[list_] := {
maxdB = Max[list];
Pos = Position[list, maxdB];
Posl = Pos{[[1l]];
maxPos = Posl[[1]];
LofT = {maxdB};

j =0;
While[True,
j=3+1;

If[ (maxPos-j) > 0 &&
(maxdB - list[[maxPos-j]]) <= 10,
LofT = Prepend[LofT,list[[maxPos-j]]],
Break[]];

17

j =0;
While[True,
i=3+1;

If[ (maxPos+j) <= Length[list] &&
(maxdB - list[[maxPos+j]]) <= 10,
LofT = Append[LofT,list[[maxPos+j]]],
Break[]]:;

-e

—

SEL takes a list of dB values (can be weighted) and outputs an overall
sound exposure level

SEL[list_] := {sel =
10 Log[10, deltat Sum[10~(list[([j]]/10),
{j,1,Length{list]}]];sel}

SELtheorhalf uses rms pressures (but reads in peak), eq 2.16 Schultz
and also subtracts 3 dB since we should be using only half the energy
since the duration of the N wave is long enough so that the shocks are
distinguished as two separate bangs.

SELtheorhalf{list_] := N[10 Log[1l0,
deltat Sum((list[[j]] / Sqrt[2])"~2 / pref~2,
{j,1,Length[list]}]] - 3]

SELtheor uses rms pressures, eq 2.16 Schultz, reads in peak press

SELtheor[list_] := N[10 Log[10,
deltat Sum[(list[[j]] / Sqrt[2])~2 / pref~2,
{j,1,Length[list]}]]]
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Runs for table information:

B Pressure as a function of depth and variables used
for all calculations

M variables

cw = 1500. ;

cair = 343.;

pref = 20 10 (-6);

T = .300; (* duration *)

ppeak = 100; (* Pa pressure doubled at surface *)
deltatau = N[5/14783];

deltat = deltatau T;

NoSamples = 16384;

signaltime = 16383 deltat;
period = signaltime/NoSamples;
fs = 1l/period;

deltaf = fs/NoSamples;

fs
9855.93

B functions for pressure
(from Vic Sparrow; based on Sawyers' theory)

(* We know what m is from the plane speed and speed of
sound in water: *)

sawyerm := V / Sqrt[1l-(V/cw)*~2]
Clear[sawyerm2]

sawyerm2= ReleaseHold[sawyerm /. V-> Hold[Times[cair, M]]]
343. M

Sart[1l -~ 0.0522884 M2]
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Clear[press] 175

press[xi_,zeta_,tau_,p0_] := pO0 (1/Pi) (1/Sqrt[2}) (
(2 tau + 2 xi - 1) ArcTan[(tau + xi - 1)/zeta] +
- (2 tau + 2 xi - 1) ArcTan{ (tau + xi)/zeta] +
zeta Log( (zeta~2 + (tau + xi)~2)/
(zeta”2 + (tau + xi - 1)+2) 1) ;

begline[t_,deltime_,press_] :=
(t deltime) (press)/ (799 deltime)

(* these are the functions that produce peak press *)
Clear [NwaveDepthl]

NwaveDepthl[depth_] := {

pickzeta = (depth/( sawyerm2 T) /. M->pickmach);

templ =

Table[N[Sqrt[2] press[0,pickzeta,tau,ppeak]],
{tau, -2, 3,deltatau}];

temp2 =

Table[begline[t,deltat, templ[[1]]],
{t,0,799}1;

endline =
-Reverse[temp2];

Ndepthlpt = Join[temp2,templ,endline];}

B Mach 2.4, 16384 samples, N wave: peak pressure
at surface 100 Pa,duration 300 ms
pickmach = 2.4;
output in the order of peak, SEL(U), SEL(C), SEL(A) (dB)

B Examples:

0 depth of 0 meters

Nwavel[.300,100];
Max[Nwavelpt]
dBvalue[Max[Nwavelpt]]

100.
130.969
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Nwavel[.300,100]; 176
fftcomplex[Nwavelpt];

Pos2Full[fftpos];

invfft[list2xform];

SELtheorhalf[invfftlist]

117.971

Nwavel[.300,100j];
fftcomplex[Nwavelpt];
dBCpolar[fftpos];
Pos2Full[dBClist];
invift[list2xform];
SELtheorhalf[invfftlist]

107.966

Nwavel([.300,100];
fftcomplex[Nwavelpt];
dBApolar[fftpos];
Pos2Full[dBAlist];
invift[list2xform];
SELtheorhalf[invfftlist]

94.4405

B depth of 16 meters

NwaveDepthl[16.0];
Max[Ndepthlpt]
dBvalue{Max[Ndepthlpt]]

58.8602
126.366

fftcomplex[Ndepthlpt];
Pos2Full[fftpos];
invift[list2xform];
SELtheorhalf[invfftlist]

115.258

dBCpolar[fftpos];
Pos2Full[dBClist];
invfft[list2xform];
SELtheorhalf[invfftlist]

87.8946

dBApolar[fftpos];
Pos2Full[dBAlist];
invfft[list2xform];
SELtheorhalf[invfftlist]

38.2229
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Appendix B.
Two-Dimensional Second-Order Computer Code

This appendix contains the Fortran code for the two-dimensional simulation of a sonic
boom interacting with the ocean. The finite difference schemes used for the wave propa-
gation are 2nd-order accurate. Also contained in this appendix are the global variable file.
the input files. and the output file: these files appear in the stated order following the wave
propagation code.

Fortran code for wave propagation. prop2o. £:

e 3 e e ke o ok ke ok A ok ok 3K ks ok 3 Ak K ok ok ok i ok 3 K 3 3k 3 K e 3 3k ok ok ok 3 3 3k 3 ok ke 3 e Kk 3K 3 b 3k 3K 3 3 K ok o 3% 3 % 3K K K e o 3 ok kK K

prop2o.f

e e ok e o ok 2k ok e e ok K o ke ok 3k K K 3 ok 3k o K ok e e ok ke 3 3 kK % 3 3k K K 3 3K K 3 3 3 3 3 3 oK i K ok i 3 3k 3 3 3 ok e K 3 ok K % K Ak Kok

e e e e A e e 3k ok ek K e k3 ok K oK K K 3k 3k 3 3k 3 e 3 3 R ok ok Ok 3k kK 3K i 3 ok 3 3 K 3k ok 3 3 K ok 3 % 3 3 % % 3 o 3 ok K K

This program is J. Rochat and V. Sparrow’s Fortran code for modeling

sonic boom propagating from air, reflecting from water, and creating
a penetrating evanescent wave.

The Computational Domain:

The top, right, and left boundaries of the rectangular domain
are rigid, and the bottom boundary is absorbing.

Inhomogeneity is represented by a varying matrix c(i,j) to
represent the speed of sound, and the varying matrix rho(i,j) to
represent the density variations.

This program was last modified on 3/31/97

3k o o ok ek o o e e 3k 3 3 K 3K ok % Kk 3 3k 3 ok ek ok 3 ok 3k 3k koK ko ok e ok ok 3k ke 3k ok ok e 3 e e ok ok 3 3 ok 3K 3k ok 3K ok ok ok ok e ok e ok ok kK
¥ 3k ke ok 3k ke e e 3k 3k 3k ok ok ok 3 3K 3 3k 3k o 3 3k ke sk e 3 3k 3k 3 K ok ok ok 3 ok 3k 3 ok ok ok K ok ok 3 e 3 3 3 ok 3k 3 3K K o ok %K 3 3K oK K XK KK

** Declare global variables.
Read in the common block.

O 00000 0000000000000 0000000
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include ’metergrid.common’

c
c **x Declare

local variables:

¢ general variables
integer i, j, k, itime, nosteps
integer ocean

real
real
real
real
real

w
time, maxtime, mach, hfactor, vfactor, slope, thetai
const,halfdelz,diff,densetop,rangepts
layers,newrange,topdiff,botdiff

layer (10) ,diffb(10),bbot(10)

sumdelz,range

pmax,twotau, tau

avpl,avp2

for absorbing boundary condition

cosbotangle - cosine of the bottom angle.
sinbotangle - sine of the bottom angle.

The bottom angle is the angle away from the -z axis.
I.e., straight down is a bottom angle of zero.

cosbotangle, sinbotangle

for use in swell function

eta - the height or depth of the ocean above or below ambient state.
height - height of ocean swell. This is the crest to trough measurement.

distance along the ocean at its ambient state.
the sampling distance.
type of wave we want.

amplitude - the "amplitude" of the swell. For a sinusoidal swell,

the amplitude of the swell is one half of the height.

lambda - the "wavelength" of the swell

swellfunc
eta, height, distance, sampdist, amplitude, lambda

integer type

for input and output files

character*9 inputfile
character*10 outputfile

real
real
real
c
¢ variables
c
c
c
c
real
c
¢ variables
c
c
¢ distance -
c sampdist -
Cc type - the
c
c
c
real
real
c
c variables
c

¢ opening files for input and output
open(unit=1, file=’inputfile’, status=’old’)
open(unit=2, file=’outputfile’, status=’new’,

form="formatted")

open(unit=3, file=’bublayers’, status=’old’)

&
c
c
¢ *x (Qutline

of Program:
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¢ - read in bubble layer information
¢ - define constants
¢ - choose ocean surface type and wave height
¢ - calculating the bubble layer profiles including 1 plume
¢ - set grid values for entire domain: medium 1, interface, or medium
2
¢ - choose Mach number and sonic boom parameters
¢ - calculate initial pressure for the entire domain
¢ - calculate pressure at later times
c
c
c *** Read in bubble layer information
c
¢ indicate whether or not to include bubble layers in the program
read(unit=1, fmt=4000)bubbles
write(unit=2, fmt=3000)’
write (Unit=2, Fmt=3010) ? %k sk sk sk sk sk ik ko ok dodok 3k 4 o o o e ok A ok ook ook oo ok ook
write(unit=2, fmt=3000)°’ °’
write(unit=2, fmt=4001)’'1 for including bubbles
&or 2 for not’
write(unit=2, fmt=4002)'’include bubble layers: ’,bubbles
c
¢ indicate whether or not to insert a bubble plume
read(unit=1, fmt=5000)bubplume
write(unit=2, fmt=3000)’ ’
write(unit=2, fmt=5001)’1 for including a bubble plume
&or 2 for not’
write(unit=2, fmt=5002) ’include a bubble plume: ’,bubplume
c
¢ read in bubble layer variables

read(unit=3, fmt=4010)numlay
write(unit=2, fmt=3000)’ °*
vrite(unit=2, fmt=4011)’number of bubble layers: ’,numlay
layers = 0.
do i=1,numlay
¢ number of meters in depth of bubble layer
read(unit=3, fmt=4008)layer (i)
¢ speed of sound in bubble layer
read(unit=3, fmt=4004)cb(i)
¢ density of bubble layer
read (unit=3, fmt=4004)rhob(i)

write(unit=2, fmt=3000)°’ °
write(unit=2, fmt=4005)’thickness of bubble layer #’,i,’:

& layer(i),’ m’
write(unit=2, fmt=4006)’ speed of sound = ’,cb(i),’ m/s’
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write(unit=2, fmt=4007)’ density = ’,rhob(i),’ kg/m~3’
layers = layers + layer(i)
end do

write(unit=2, fmt=3000)’ ’
write(unit=2, £mt=3010) 7 %%k sk ko % ik Kk ko 3k ok ok ok ook o ok oo ok e ek ok ok 7

*x*x Define constants

Set the depth of the air-water interface.
depthl = -340.
Set the depth of the bottom of each bubble layer
if (bubbles.eq.l) then
bbot(1) = depthl - layer(1)
do i=2,numlay
bbot (i) = bbot(i-1) - layer(i)
end do
endif

Set up initial constants.

maxtime - maximum time allow for pressure calculations

deltax - grid block size in horizontal direction

deltaz - grid block size in vertical direction, not near interface
delzinter - grid block size in vertical direction, near interface
range - physical range of dense grid (around interface)

newrange - newrange is the physical range of the dense grid when
bubble layers are included

densetop - physical location of top of dense grid range
ranget - grid number representing the top of dense area
rangepts - number of grid points in physical range

rangeb - grid number representing the bottom of dense area

maxtime= 0.794
deltax = 1.0
oodelxsq = 1/(deltax*deltax)
deltaz = deltax
delzinter = 0.25+%deltaz
halfdelz = .5*delzinter
range = 6.
if (bubbles.eq.1) then
if (bubplume.eq.1) then
newrange = 6. + layers + numlay*delzinter
elseif (bubplume.eq.2) then
newrange = 6. + layers
end if
else
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newrange = 6.
endif
densetop = depthl + range/2.
ranget = zmax + int(densetop)
rangepts = int(newrange/delzinter)
rangeb = ranget - rangepts

c
¢ This loop assigns the vertical grid block size
¢ - makes the grid dense around the interface region
do j = zmax,l1l,-1
if ((j.gt.ranget).or.(j.le.rangeb)) then
delz(j) = deltaz
else
delz(j) = delzinter
endif
end do
c

¢ This loop assigns each grid point a physical location in the
¢ vertical direction
¢ Z coordinates: as j goes from 1 to zmax, zpos goes
¢ from -(zmax-1)*deltax to 0
sumdelz = 0.
do j=zmax,1,-1
zpos(j) = -sumdelz
sumdelz = sumdelz + delz(j)
end do

]

c
¢ This loop assigns each grid point a physical location in the
¢ horizontal direction
¢ X coordinates: as i goes from 1 to xmax, xpos goes
¢ from 0 to (xmax-1)*deltax
do i=1, xmax
xpos(i)= deltax=*(i-1)

end do
c
write(unit=2, fmt=3000)°’ ’
write(unit=2, fmt=2050)’x total distance is approximately
&deltax*xmax
write(unit=2, fmt=2050)’z total distance is approximately
&sumdelz
c
¢ The speed of sound will have a max of 1500, so must account for
this.

¢ also, must use the smallest delta value on grid
deltat = 0.7*delzinter/1500.
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deltsq = deltatxdeltat

C
¢ Initialize ¢ and rho
¢ medium 1
rhol = 1.21
cl = 343.
¢ medium 2 (ocean without bubbles)
rho2 = 1000.
c2 = 1500.
c
¢ Constants to be used in finite difference routine

clsqtsq = (cl*cl)=*deltsq
c2sqtsq = (c2*c2)*deltsq
al = 1./(rhol*cixcl)

a2 = 1./(rho2*c2*c2)
bl = 1./rhotl
b2 = 1./rho2

if (bubbles.eq.1) then
do i=1,numlay
csqtsq(i) = (cb(i)*cb(i))*deltsq
abub(i) = 1./(rhob(i)*cb(i)*cb(i))
bbub(i) = 1./rhob(i)
end do
endif

**x Choose ocean surface type and wave height

Read in from input file the choice of either a flat ocean

surface (1) or an ocean surface with waves (2)
read (unit=1, fmt=1000)ocean
write(unit=2, fmt=3000)’
write (unit=2 , TMt=3010) 7 kb sk 5 o ok oo sk sk ok sk o ok e 3k ok ok ok ok ok ok 36 ok 3k ok ok ok ok ok ok
write(unit=2, fmt=3000)’ ?
write(unit=2, fmt=2000)’1 for a flat ocean surface

&or 2 for wavy’

write(unit=2, fmt=2010)’ocean type: ’,ocean

O o0 0 o0 o000

Set the amplitude and wavelength
Read in from input file the wave height
(height is defined as the distance from crest

to trough)
read(unit=1, fmt=1010)height
write(unit=2, fmt=3000)’ °’
write(unit=2, fmt=2001)’the height of the swell waves'’
write(unit=2, fmt=2020)’height = ’,height,’ meters’
amplitude=0.5*height

O o0 0 o000
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common naval architects’ definitionm.
Seven times the height is the minimum permissible wavelength
lambda= 20.*height

c
¢ lambda is twenty times the height of the swell. This is the
c
c

c
¢ Read in from file the choice of ocean profile type:
¢ sinusoidal (1) or trochoidal (2) waves
¢ or combination #1, sine wave .5 wavelength of trochoidal (3)
¢ or combination #2, sine wave .3 wavelength of trochoidal (4)
read(unit=1, fmt=1020)type
write(unit=2, fmt=3000)’ °’
write(unit=2, fmt=2002)’type of ocean wave profile:’
write(unit=2, fmt=2003)°’(1) sinusoidal, (2) trochoidal,
&(3) combination #1:
¢sine wave .5 wavelength °’
write(unit=2, fmt=2004)’of trochoidal, (4) combination #2:
&sine wave .3 wavelength of trochoidal’
write(unit=2, fmt=2030)’type: ',type
c
c This loop calculates the ocean surface shape according to the
¢ wave type and height
do i=1, xmax
if (ocean.eq.2) then
zinter(i)=swellfunc(xpos(i),amplitude,lambda,type)
& +depthl
elseif (ocean.eq.1) then
zinter (i)=depthl

else
print *,’invalid type of ocean’
endif
end do
c
¢ This loop smooths any ocean wave peak that has a single maximum
or

¢ minimum grid point
do i=2, xmax-1
if ((zinter(i).gt.zinter(i-1)).and.
& (zinter(i).gt.zinter(i+1))) then
zinter(i) = zinter(i-1)
elseif ((zinter(i).lt.zinter(i-1)).and.

& (zinter(i).lt.zinter(i+1))) then
zinter(i) = zinter(i-1)
endif
end do

c
¢ This loop adjusts the pixels near the peak of the ocean waveform;
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the adjustment takes place only in the case of ocean profile type

the trochcidal with 1/2 wavelength sinusoidal.

&

&P &

S

if(type.eq.3) then
do i=4, xmax-3
if ((nint(zinter(i)/delzinter).eq.

nint(zinter(i+1)/delzinter)).and.
(nint(zinter(i)/delzinter) .eq.
nint(zinter(i+2)/delzinter))) then
if((nint(zinter(i-1)/delzinter).1lt.
nint(zinter(i)/delzinter)).and.
(nint(zinter(i-1)/delzinter).gt.
nint(zinter(i-2)/delzinter))) then
if (nint(zinter(i-3)/delzinter).eq.
nint(zinter (i-2)/delzinter)) then
zinter(i-2) = zinter(i-1)
endif
endif
if ((nint{(zinter(i+3)/delzinter).1t.
nint(zinter(i+2)/delzinter)).and.
(nint(zinter(i+3)/delzinter).gt.
nint(zinter(i+4)/delzinter))) then
if (nint(zinter(i+5)/delzinter).eq.
nint(zinter(i+4)/delzinter)) then
zinter(i+4) = zinter(i+3)
endif
endif

endif
end do
endif

**x Calculating the bubble layer profiles including 1 plume

if (bubplume.eq.1) then
the horizontal value where the middle of the plume resides

midplume = 400

midplume = 270
laydepth = 0

calculating the profile for each layer
do layno=1,numlay

laydepth = laydepth + layer(layno)
call plume

This loop smooths any peak in the profile that has a single

maximum or minimum grid point

do i=2, xmax-1
if ((pprofile(i).gt.pprofile(i-1)).and.
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& (pprofile(i).gt.pprofile(i+1))) then
pprofile(i) = pprofile(i-1)
elseif ((pprofile(i).lt.pprofile(i-1)).and.
& (pprofile(i).lt.pprofile(i+1))) then
pprofile(i) = pprofile(i-1)
endif
end do

do i=1,xmax
layprof(layno,i) = pprofile(i) + depthl
end do
end do
endif

c
c
c ***x Set grid values for entire domain
¢ This loop assigns grid values according to media and assigns
¢ speed of sound values for the grid

c

¢ * Ocean without bubble layers

c medium 1, interface, or medium 2
if (bubbles.eq.2) then

c

do i=1, xmax
do j=1, zmax
diff = zpos(j)-zinter(i)
¢ medium 1

c a grid value of 1 implies you are in medium 1
if (diff.gt.halfdelz) then
grid(i,j) =1
c(i,j) = ct

rho(i,j) = rhol
a(i,j) = at
if (j.eq.ranget) then
grid(i,j) = 4
endif
¢ medium 2
c a grid value of 2 implies you are in medium 2
elseif (diff.lt.-halfdelz) then
grid(i,j) = 2
c(i,j) = c2
rho(i,j) = rho2
a(i,j) = a2
if (j.eq.rangeb) then
grid(i,j) = 5
endif
¢ at the interface
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c a grid value of 3 implies you are in the interface range
else
grid(i,j) =3
c(i,j) = c2
rho(i,j) = rho2
c percentage of the grid block surrounding the grid point which

c is above the interface (this is an approximation)

percntabv = (diff + halfdelz)/delzinter
c this a function is used in the fd routine at the interface

a(i,j) = percntabv*al + (1.-percntabv)=a2

endif
end do
end do

c
¢ * Assigning grid values now with bubble layers included
c air, ocean with bubble layers, ocean without bubble layers,
c interfaces

elseif (bubbles.eq.1) then
do i=1, xmax
do j=1, zmax
diff = zpos(j)-zinter(i)
do k=1, numlay
if (bubplume.eq.2) then
diffb(k) = zpos(j)-bbot (k)
elseif (bubplume.eq.1) then
diffb(k) = zpos(j)-layprof(k,i)
endif
end do
¢ air
c a grid value of 1 implies you are in the air
if (zpos(j).ge.(zinter(i)-halfdelz)) then
if (diff.gt.halfdelz) then
grid(i,j) =1
c(i,j) =ci1
rho(i,j) = rhol
a(i,j) = a1l
if (j.eq.ranget) then
grid(i,j) = 4
endif
else
c a grid value of 3 implies you at the air/bubble layer #1 interface
grid(i,j) =3
c(i,j) = cb(1)
rho(i,j) = rhob(1)
percntabv = (diff + halfdelz)/delzinter
a(i,j) = percntabv*al + (1.-percntabv)#*abub(1)
endif
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endif
c Dbubble layers
do k=1,numlay
if (k.eq.1) then
topdiff = zinter(i)-halfdelz
else
if (bubplume.eq.2) then
topdiff = bbot(k-1)-halfdelz
botdiff = bbot(k)-halfdelz
elseif (bubplume.eq.l) then
topdiff = layprof(k-1,i)-halfdelz
botdiff = layprof(k,i)-halfdelz
endif
endif
c a grid value of k+9 implies you are in bubble layer #k
if ((zpos(j).lt.topdiff).and.
& (zpos(j) .ge.botdiff)) then
if (diffb(k).gt.halfdelz) then
grid(i,j) = k+9
c(i,j) = cb(k)
rho(i,j) = rhob(k)
a(i,j) = abub(k)
else
c a grid value of k+19 implies you at the bubble layer #k/bubble
c layer #k+1 interface (ocean without bubbles for last layer)
grid(i,j) = k+19
percntabv = (diffb(k) + halfdelz)/delzinter
if (k.eq.numlay) then
c(i,j) = c2
rho(i,j) = rho2
a(i,j) = percntabv*abub(k) + (1.-percntabv)=*a2
else
c(i,j) = cb(k+1)
rho(i,j) = rhob(k+1)
a(i,j) = percntabv*abub(k) + (1.-percntabv)=*abub(k+1)
endif
endif
endif
end do
¢ ocean without bubbles
c a grid value of 2 implies you are in the ocean without bubbles

if (bubplume.eq.2) then

botdiff = bbot(numlay)-halfdelz
elseif (bubplume.eq.1) then

botdiff = layprof(numlay,i)-halfdelz
endif
if (zpos(j).lt.botdiff) then
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grid(i,j) = 2
c(i,j) = c2
rho(i,j) = rho2
a(i,j) = a2
if (j.eq.rangeb) then
grid(i,j) =5
endif
endif
c
end do
end do
c
endif
c
c
¢ ***x Choose Mach number and sonic boom parameters
c
¢ Now the slope of the initial wave is defined according to the
c speed of the aircraft, the Mach number.
¢ This is where the Mach number is defined.
¢ Read in Mach number from input file
read(unit=1, fmt=1030)mach
write(unit=2, fmt=3000)’ °’
write(unit=2, Fmt=3010) 7 %%k sk ok ook ok 4k ook 3 de o o ook o ook o ok ok ok )
write(unit=2, fmt=3000)’ ’
write(unit=2, fmt=2040)’the aircraft is traveling at Mach
’ ,mach
c
¢ Let the angle of incidence be defined as thetai
c
thetai = asin(1./mach)
c
c
¢ The vertical and horizontal components of the initial wavefront
vfactor = cos(thetai)
hfactor = sin(thetai)
c
¢ Clearing main arrays

do j=1,zmax
do i=1,xmax

p(i,j) = 0.
ptmpi(i,j) = 0.
ptmp2(i,j) = 0.

intenx(i,j) = 0.
intenz(i,j) = O.
psumx(i,j) = O.
psumz(i,j) = 0
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end do
end do

c Read in sonic boom parameters (peak pressure and duration)
read(unit=1, fmt=1040)pmax
write(unit=2, fmt=3000)’ °’
write(unit=2, fmt=2060)’the peak pressure of the sonic
&boom is ’,pmax,’ Pa’
read(unit=1, fmt=1050)twotau
write(unit=2, fmt=3000)’ ’
write(unit=2, fmt=2070)’the duration of the sonic boom is

&twotau,’ seconds’

tau = .S5*twotau
c
c
Cc *** Calculate initial pressure for the entire domain
c

¢ Start the simulation:
¢ The time is zero. Set initial conditioms.
itime = 0
time = deltat*itime
c
c Initialize p(i,j) to be initial data at time itime=0.
¢ Here we define p to be the physical, i.e., real pressure.
¢ Now the initial pressure is calculated
c
do j=1,zmax
do i=1,xmax
const = hfactor*(xpos(i)) - vfactor*(zpos(j)-depthl-80.)
p(i,j)= 1.5*pmax*(const/(cl*tau))=*2.5*w(const, (cl*tau))
const = hfactor*(xpos(i))
X - vfactor*(zpos(j)-depthl-80.
x -deltat*c(i,j)/vfactor)
ptmp2(i,j)= 1.5*pmax*(const/(cl*tau))=*2.5*w(const, (cl*xtau))
end do
end do
c
c Initialize top boundary.
¢ The bottom boundary will be an absorbing boundary condition.
do i= 2,xmax-1
p(i,zmax)= p(i,zmax-1)
end do
c
c Initialize left and right boundaries.
do j=1,zmax
p(xmax,j)= p(xmax-1,j)
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p(1,3)= p(2,3)
end do
c
¢ Initialize information for the bottom absorbing boundary condition.
do i= 2, xmax-1
botdist(i)=sqrt(xpos(i)*xpos(i)
X +(zpos (1)-depthl) *(zpos (1) -depthl) )
end do
do i=2, xmax-1
cosbotangle= -(zpos(1)-depthl)/botdist(i)
sinbotangle= xpos(i)/botdist (i)
botangfac(i)= - (cosbotangle
X + sinbotangle*sinbotangle/cosbotangle )
end do
c
¢ Read in from input file:
¢ whether or not to include a dashed outline of the refined
¢ grid region (in the image); (1) yes, (2) no
read(unit=1, fmt=1060)outline
write(unit=2, fmt=3000)’ °
write(unit=2, fmt=3010) * %ok k% ook dok ko ok 5 ok d ok ok ok ook ok ok ok
write(unit=2, fmt=3000)’ ’
write(unit=2, fmt=2006)’whether or not to include a
&dashed outline of the refined grid region in the’
write(unit=2, fmt=2080)’output image, (1) yes, (2) no: ’,outline

¢ Print out initial data.
call prraster(itime)
itime=itime+1

c
¢ Keeping initial pressure information for later use in intensity
¢ calculations
do j = zmax,1,-1
do i = 1,xmax
if ((j.eq.1).or.(i.eq.1).or.(i.eq.xmax)) then
psumz(i,j) = 0.
psumx(i,j) = O.
else
psumz(i,j) = psumz(i,j)+(p(i,j)-p(i,j-1))
avpl = 0.5*%(p(i-1,j) + p(i-1,j-1))
avp2 = 0.5*%(p(i+1,j) + p(i+1,j-1))
psumx(i,j) = psumx(i,j)+(avpl-avp2)
endif
end do
end do
c
c
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*xx Calculate pressure at later times

Begin the loop and advance the solution a time step:

O 0 0 o0 0

number of time steps
nosteps = int(maxtime/deltat)

do i=1,nosteps

¢ Do boundary precalculations.
call prebound

¢ Do finite difference method.
call sochdiff2d

¢ Do boundary conditions.
call bounds

¢ Do intensity calculationms.
call intensity

¢ Print every 40 time steps:
if(mod(itime,40) .eq.0) then

c print*, ’Printing at time ’, time
call prraster(itime/40)
endif
c

¢ Do increment.

¢ For next time know:
itime=itime+1
time=itimex*deltat

end do
c
c We are done.
c
write(unit=2, fmt=3000)’ °’
write(Unit=2, Ffmt=3010) ? %%kt %k ok odkok A ko Aok ok ook ok ok ok ok ke ok )
write(unit=2, fmt=3000)’ °
write(unit=2, fmt=2005)’This program terminated normally.’
c
c formats for input and output files
c
1000 format (//T2,1I1)
1010 format (T2,F4.2)
1020 format (/T2,11)
1030 format(////T2,F3.1)
1040 format (T2,F4.1)
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1050 format (T2,F5.3)
1060 format (T2,I1)

2000 format (A40)

2001 format (A29)

2002 format (A27)

2003 format (A76)

2004 format (A72)

2005 format (A33)

2006 format (A76)

2010 format (A12,I1)

2020 format (A9,F4.2,A7)
2030 format (A6,I1)

2040 format (A34,F3.1)
2050 format (A34,F5.1)
2060 format (A39,F4.1,A3)
2070 format (A34,F5.3,A8)
2080 format (A31,I1)

3000 format (A1)

3010 format (A35)

4000 format(////T2,11)
4001 format (A36)

4002 format (A23,I1)
c4003 format(//T2,F4.1)
4004 format (T2,F6.1)
4005 format (A27,12,A3,F4.1,A2)
4006 format(A19,F5.0,A4)
4007 format(A12,F5.0,A7)
4008 format(T2,F4.1)
4010 format(//T2,12)
4011 format (A25,I2)

5000 format(//T2,I1)
5001 format (A43)

5002 format (A24,1I1)

c
¢ closing input and output files
close(unit=1)
close(unit=2)
close(unit=3)
stop
end
subroutine prebound
¢ Subroutine to precalculate boundary conditions.
¢ Written on 8/10/95 at 9:00 pm by V. Sparrow.
¢ Right now we are only precalculating the bottom boundary condition.
include ’metergrid.common’

Local vars:

(q]
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integer i
c
¢ Precalculate the bottom absorbing boundary condition.
do i=2, xmax-1
bottomval(i) = ( (1. - c2*deltat/botdist(i))*p(i,1)

X - (c2*deltat/deltaz)*botangfac(i)*(p(i,2)-p(i,1))

)

end do

return

end

subroutine bounds
¢ Subroutine to implement boundary conditicas.
¢ Modified on 8/10/95 at 9:00 pm by V. Sparrow to include the
¢ absorbing boundary condition on the bottom.

include ’metergrid.common’
c
¢ Local vars:

integer 1i,j
¢ Top and Bottom:
do i=2,xmax-1
p(i,zmax)= p(i,zmax-1)

end do
c
c Left and Right:
do j=1,zmax
p(xmax, j)= p(xmax-1,j)
p(1,j)= p(2,3)
end do
c
¢ Now recall our calculated bottom boundary condition values.
do i=2, xmax-1
p(i,1)= bottomval (i)
end do
return
end
subroutine prraster(imagenum)
c
¢ This subroutine takes our data and prints raster images useable
¢ by the NCSA visualization routines. It depends on the NCSA
¢ Hiearchical Data Format (HDF) package.
c
include ’'metergrid.common’
c
¢ Declare subroutine argument.
¢ 1imagenum - an integer, which image number we use.

integer imagenum
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¢ Declare external integer function.
integer d8pimg
integer dssdims,dspdata

Local variables.
imin, imax - the integer minimum and maximum values, respectively.
These numbers should be between O and 255, imin < imax.
rmin, rmax - the real minimum and maximum values for the
acoustic pressure.
charray - the character array used for our raster images.
rarray - real temporary array
rtmp - real vector in y2 direction
chnum - a character string to represent the numbers 000 to 999.
fname - the filename for our image
ones, tens, huns - digits for ones, tens, and hundreds.
istat - status of the HDF routines called, on return.

real rmin, rmax, rarray(xmax, zmax), rtmp(zmax)

real ixarray(xmax,zmax),izarray(xmax,zmax)

real ixtmp(zmax),iztmp(zmax)

integer imin, imax, ones, tens, huns, istat

integer dims(2)

character*!l charray(xmax,zmax)

character*3 chnum

character*8 fname,fnamereal,fnameintx,fnameintz

O 0 0 0 0 00 0 00 000

c
c print*,’you have made it to the file saving loop’
c print*,’at time step ’,imagenum
c
¢ Set integer minimum and maximum.
imin=2
imax=254
c
¢ Set minimum and maximum for pressure.
rmin = -120.0
rmax = 120.0
c
¢ Find the filename for each image from imagenum.
¢ This technique is taken from the PhD thesis of Dr. Mike White,
p. 94.

ones = mod(imagenum,10)

tens = ifix(mod(imagenum,100)/10.)

huns = ifix(imagenum/100.)
¢ Add 48 to make them printable, and squeeze together.

chnum=char (huns+48) //char (tens+48)//char (ones+48)
¢ Make filename.

fname=’pimno’//chnum

fnamereal=’rimno’//chnum
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fnameintx=’intxx’//chnum
fnameintz=’intzz’//chnum

Flip the array’s top and bottom, so things are printed
in a Cartesian system, i.e. the top is up.
(Fortran is strange, that you must do this!)

Now do flipping.

do i=1,xmax

do j=1,zmax

change to this subroutine

rtmp(j)=p(i,j)
ixtmp(j)=intenx(i,j)
iztmp(j)=intenz(i,j)

end do

do j=1,zmax
rarray(i,j)=rtmp(zmax-j+1)
ixarray(i,j)=ixtmp(zmax-j+1)
izarray(i,j)=iztmp(zmax-j+1)

end do

end do

Write image with realistic pressure values via a call
to an HDF routine

£

if (((imagenum.ge.135).and.(imagenum.le.170).and.

(mod (imagenum,5) .eq.0)) .or.
((imagenum.eq.100) .or. (imagenum.eq.105) .or.
(imagenum.eq.110) .or. (imagenum.eq.115) .or.
(imagenum.eq.120))) then

dims(1) = xmax
dims(2) = zmax

istat = dssdims(2,dims)

if (istat.ne.0) then
print =*,’Error writing HDF file ’,fnamereal,’.’
stop

endif

istat = dspdata(fnamereal,2,dims,rarray)

if (istat.ne.0) then
print *,’Error writing HDF file ’,fnamereal,’.’
stop

endif

endif

Write image with instantaneous intensity values via a call
to an HDF routine
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if ((imagenum.eq.160).or. (imagenum.eq.135).or.
(imagenum.eq.100) .or. (imagenum.eq.105) .or.
(imagenum.eq.110) .or. (imagenum.eq.115) .or.
(imagenum.eq.120) .or.
(imagenum.eq.170)) then
dims (1) = xmax
dims(2) = zmax

L =

istat = dssdims(2,dims)

if (istat.ne.0) then
print =,’Error writing HDF file ’,fnameintx,’.’
print *,’Error writing HDF file ’,fnameintz,’.’
stop

endif

istat = dspdata(fnameintx,2,dims,ixarray)
if (istat.ne.0) then
print =,’Error writing HDF file ’,fnameintx,’.’
stop
endif
istat = dspdata(fnameintz,2,dims,izarray)
if (istat.ne.0) then
print *,’Error writing HDF file ’,fnameint=z,’.’
stop
endif
endif
c
¢ Do scaling and printing for pressure.
c
¢ Now put a solid line along the two media interface.
do i=1,xmax
do j=1,zmax
if ((grid(i,j).eq.3).or.(grid(i,j).ge.20)) then
rarray(i,zmax-j+1)=-118.0
endif
end do
end do

¢ Now put a dashed line around boundaries of refined grid region.
if (outline.eq.l1) then
do i=1,xmax
do j=1,zmax
if ((grid(i,j).eq.4).or.(grid(i,j).eq.5)) then
if ((mod(i,10).eq.1).or.(mod(i,10).eq.2).o0r.
x (mod (i, 10).eq.3).or.(mod(i,10).eq.4) .or.
x (mod(i,10).eq.5)) then
rarray(i,zmax-j+1)=-118.0
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endif
endif
end do
end do
endif
c
¢ Scale the real array rarray for putting in character form.
do i=1,xmax
do j=1,zmax
rarray(i, j)=(imax-imin)*( (rarray(i,j)-rmin)

X /(rmax-rmin) ) + imin
end do
end do
c
c Make a character array based on the real array rarray.

do i=1,xmax
do j=1,zmax
charray(i,j) = char( ifix(rarray(i,j)) )

end do
end do
c
¢ Write image via a call to an HDF routine.
¢ O = no compression.
if (((imagenum.ge.135).and.(imagenum.le.170).and.
& (mod (imagenum,5).eq.0)).or.
& ((imagenum.eq.100) .or. (imagenum.eq.105) .or.
& (imagenum.eq.110) .or. (imagenum.eq.115) .or.
& (imagenum.eq.120) .or. (imagenum.eq.000))) then
istat = d8pimg(fname,charray,xmax,zmax,0)
if (istat.ne.0) then
print*, ’Error writing HDF file ’, fname, ’.’
stop
endif
endif
¢ Done.
return
end
subroutine sochdiff2d
include ’metergrid.common’
¢ This routine implements two types of finite difference routines
¢ At the interface: a 2-D routine similar to Sochacki, et al.
¢ Rest of the domain: 2-D central difference routine
¢ - accounts for uniform grid in x direction and non-uniform grid
in
c z direction

real b
real cnsqtsq,bbl,bb2
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integer j,k,i
c print *,’you have entered the sochdiff2d subroutine’

do k = zmax-1,2,-1
do j = 2,xmax-1
¢ 1if not at any interface
if ((grid(j,k).eq.1).or.(grid(j,k).eq.4).or.
& (grid(j,k).eq.2).or.(grid(j,k).eq.5) .or.
& ((grid(j,k) .ge.10).and. (grid(j,k).1t.20))) then
if ((grid(j,k).eq.1).or.(grid(j,k).eq.4)) then
cnsqtsq = clsqtsq
endif
if ((grid(j,k).eq.2).or.(grid(j,k).eq.5)) then
cnsqtsq = c2sqtsq
endif
do i=1,numlay
if (grid(j,k).eq.(i+9)) then
cnsqtsq = csqtsq(i)

endif

end do

ptmp1(j,k) = 2.*p(j,k)-ptmp2(j,k)
& + cnsqtsg*((p(j+1,k)-2.*p(j,k)+p(j-1,k))*oodelxsq
& + ((p(j,k+1)-p(j,k))/delz(k+1)
& - (p(3,k)-p(j,k-1))/delz(k))*2./(delz(k+1)+delz(k)))

if (ptmpi(j,k).gt.200.) then

print*,’ptmpl(’,j,’,’,k,’)=’,ptmp1(j,k)
endif

the centered-difference approximation for a grid point
lying near the interface
elseif ((grid(j,k).eq.3).or.(grid(j,k).ge.20)) then
if (grid(j,k).eq.3) then

a o o000

bbl = b1
if (numlay.eq.0) then
bb2 = b2
else
bb2 = bbub(1)
endif
endif

do i=1,numlay
if (grid(j,k).eq.(i+19)) then
bbl = bbub(i)
if (i.eq.numlay) then

bb2 = b2
else
bb2 = bbub(i+1)
endif
endif
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end do

c (add more if statements here if adding bubble layers)

ptmpl1(j,k) = 2.*p(j,k)-ptmp2(j,k)

+(deltsq/a(j,k))*(oodelxsq*(b(j,.5,k,0.,zpos(k),
deltaz,delzinter,bbl,bb2,ranget,rangeb,zinter(j))*p(j+1,k)
-(b(j,.5,k,0.,zpos(k) ,deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))+b(j,-.5,k,0.,zpos(k) ,deltaz,delzinter,
bbl,bb2,ranget,rangeb,zinter(j)))*p(j,k)
+b(j,-.5,k,0.,zpos(k),deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))*p(j-1,k))
+(b(j,0.,k,.5,zpos(k) ,deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))*(p(j,k+1)-p(j,k))/delz(k+1)
-b(j,0.,k,-.5,zpos (k) ,deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))*(p(j,k)-p(j,k-1))/delz(k))*2./(delz(k+1)
+delz(k)))
c if (ptmp1(j,k).gt.200.) then
print=*,’ptmpl(’,j,’,’,k,’)=?,ptmp1(j,k)
C endif

endif
end do
end do

PRI RRRRRIRREERRR

O

advance the time
do k = 1,zmax
do j = 1,xmax
c print *,’you are now advancing the time in sochdiff2d’
ptmp2(j,k) = p(j,k)
p(j,.k) = ptmpi(j,k)

(9]

end do
end do
c
return
end
c

subroutine intensity

include ’metergrid.common’
¢ This subroutine calculates the instantaneous intensity over the
¢ the computational domain using the pressure values

C intenx: x component of intensity
¢ intenz: z component of intensity
integer i,j
real zfactor,xfactor,ptl,pt2
real pavtl,pavt2

ptli = 0.
pt2 = 0.
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O 0 0 00

O 0000

C

pavtl = 0.
pavt2 = 0.
do j = zmax,1,-1
do i = 1,xmax
if ((j.eq.1).or.(i.eq.1).or.(i.eq.xmax)) then
intenz(i,j) = 0.
intenx(i,j) = 0.

else
zfactor = deltat/(2.*rho(i,j)*delz(j))
xfactor = deltat/(2.*rho(i,j)*2.*deltax)
ptl = p(i,j)

pt2 = p(i,j-1)
psumz(i,j) = psumz(i,j)+(pti-pt2)
intenz(i,j) = zfactor*(pti+pt2)+psumz(i,j)
pavtl = 0.5%(p(i-1,j) + p(i-1,j-1))
pavt2 = 0.5%(p(i+1,j) + p(i+1,j-1))
psumx(i,j) = psumx(i,j)+(pavti-pavt2)
intenx(i,j) = xfactor*(pavtl+pavt2)+*psumx(i,j)
endif
end do
end do

return
end

subroutine plume
include ’metergrid.common’

This function calculates the plume profile given some
laydepth depth of the bottom of the bubble layer

number of bubble layer (1 being top)

midplume horizontal value for middle of bubble plume

real cosmult,adjprof,pi,xx
integer i

cosmult multiplier for cosine function (adjusts the

(wavelength appropriate to radius of plume)

adjprof adjustment of the profile by a negative

shift in the horizontal direction

pi = 4.0 * atan(1.0)

c Determine horizontal shift appropriate for the bubble layer

(o4
Cc

adjprof = layno*delzinter
cosmult = pi/(laydepthx2)

Calculate the profile of the bubble plume across the horizontal
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xx = -laydepth
do i=1,xmax
if (i.le.(midplume-laydepth-1)) then
pprofile(i) = 0.0 - adjprof
elseif (i.ge.(midplume+laydepth+1)) then
pprofile(i) = 0.0 - adjprof

else
pprofile(i) = -laydepth*(cos(cosmult*xx))*#*2
& - adjprof
XX = xx + 1
end if
end do
c
return
end
c
c

real function b(m,mstep,n,nstep,zval,del,delinter,
& bconi,bcon2,rt,rb,zint)
This function computes the b function which appears in the Sochacki
fd routine

real mstep,nstep,zval,del,delinter,bconl,bcon2,val,zint
integer m,n,rt,rb

¢ rt - top of dense range

rd - bottom of dense range

(e e}

O

if ((n.gt.rt).or.(n.lt.rb)) then
val = zval + nstepxdel
elseif ((n.lt.rt).and.(n.gt.rb)) then
val = zval + nstep*delinter
elseif (n.eq.rt) then
if (nstep.gt.0.) then
val = zval + nstep*del
else
val = zval + nstep*delinter
endif
else
if (nstep.gt.0.) then
val = zval + nstep*delinter
else
val = zval + nstep=del
endif
endif
if (val.gt.zint) then
b = bconl
elseif (val.lt.zint) then
b = bcon2
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else
b = .5*(bconl+bcon2)
endif
return
end

real function swellfunc(dist, amp, lambda, wtype)
¢ This function calculates the height of the ocean swell given some
c dist - distance along the ocean
¢ amp - amplitude of the ocean swell
¢ lambda - approximate wavelength of the swell
¢ wtype - sinusoidal (1) or trochoidal (2) waves or a combination

(3
real dist, amp, lambda
integer wtype
c
¢ Wavenumber
real kk,kkl,6 kk2
c
real temp,ampl
c
¢ Calculate wavenumber.

kk= 2.%3.141592654/1ambda
kkl= 2.%3.141592654/(0.5*1lambda)
kk2= 2.%3.141592654/(0.3*1ambda)

¢ Which type?
if(wtype.eq.1) then
temp=amp*cos (kk*dist)
elseif (wtype.eq.2) then
temp= - amp=*cos(kk*dist)
X + (1./2.)*kk*amp**2#*cos (2. *kk*dist)
X - (3./8.)*kk**2*amp**3*cos (3. *kk*dist)
elseif (wtype.eq.3) then
temp= 0.6494*amp*cos (kkl*dist)

X - .5*amp=*cos(kk*dist)
(1./2.)xkk*amp**2+*cos (2. *kk*dist)
(3./8. ) xkk**2*amp**3*cos (3. *kk*dist)
elseif (wtype.eq.4) then

ampl = 1.2418%amp
temp= 0.3*amplx*cos(kk2*dist)

nox
I+

X - .S5*ampl*cos(kk*dist)
x + (1./2.)*kk*ampl**2*cos(2.*kk*dist)
x - (3./8.)*kk**2*amp1**3*cos (3. *kk*dist)
else
print*, ’swellfunc called with invalid argument’
endif
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swellfunc=temp

return
end
c
c
real function w(x,wl)
¢ This is the weighting function for the initial pressure

€ x - the position in the grid
wl - half wavelength of initial pressure
real x,wl,pi
pi = 4.0 * atan(1.0)
if ((x.gt.wl).or.(x.1t.-wl)) then
w=20.0
else
w = .5 + .5*cos(pi*x/wl)
endif
return
end

O
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File for global variables (metergrid.common) - this file is read in by prop2o.f:

C
c
o
c
C

This is ’metergrid.common’.
Last update: J Rochat 3/12/97

Declare global variables.

e

integer xmax, zmax
parameter (xmax=800, zmax=800)
common /cons/ rhol,rho2,cl,c2,percntabv
real rhol,rho2,ci,c2,percntabv
common /cons2/ rhob(10),cb(10),csqtsq(10),abub(10),bbub(10)
real rhob,cb,csqtsq,abub,bbub
common /gridvars/ c(xmax,zmax),zinter (xmax),
a(xmax,zmax) ,bottomval (xmax) ,rho (xmax ,zmax)
real c,zinter,a,bottomval,rho
common /morecons/ deltat,deltax,deltaz,dtodx,oneortwo,
newzmax
real deltat,deltax,deltaz,dtodx
integer oneortwo,newzmax
common /evenmorecons/ al,a2,bl,b2,gamma,deltsq,oodelxsq,
oodelzsq,asumo2,bsumo2,clsqtsq,c2sqtsq,delzinter
real al,a2,bl,b2,gamma,deltsq,oodelxsq,
oodelzsq,asumo2,bsumo2,cisqtsq,c2sqtsq,delzinter
common /evenmoreplus/ grid(xmax,zmax),m2count,ranget,
rangeb,outline,numlay,bubbles
integer grid, m2count,ranget,rangeb,outline,numlay,bubbles
common /geomvars/ depthl,botangfac,botdist
real depthl,botangfac(xmax),botdist(xmax)
common /moregridvars/ xpos(xmax),zpos(zmax),
dtodxsq, p(xmax,zmax) ,ptmpl (xmax,zmax) ,ptmp2(xmax,zmax) ,
delz(zmax) ,intenz(xmax,zmax) ,intenx (xmax,zmax),
psumx (xmax ,zmax) , psumz (xmax ,zmax)
real xpos,zpos,dtodxsq,u,utmpl,utmp2,delz,intenz,intenx,
psumx, psumz
common /plumevars/ midplume,laydepth,layno,bubplume,
pprofile(xmax),layprof (6,xmax)
integer midplume,laydepth,layno,bubplume
real pprofile,layprof
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Example of input file (inputfile) - this file contains the values for the physical parameters
in the simulation and is read in by prop2o.f:

This file contains all the information needed as input for
the sonic boom/ocean interaction simulation program; currently
this program is named prop2o.f.

2 indication of whether or not to include
bubble
layers in the simulation, (1) yes, (2) no
(integer)
2 indication of whether or not to include
a bubble
plume in the simulation, (1) yes, (2) no
(integer)
2 ocean type, (1) flat, (2) wavy (integer)
3.75 height of swell waves (height is defined
as the distance from crest to trough) (meters,real)
2 type of wavy ocean profile (integer)
(1) sinusoidal
(2) trochoidal
(3) combination #1: trochoidal+1/2wavelength
sine
(4) combination #2: trochoidal+1/3wavelength
sine
2.4 Mach number (real)
50.0 peak pressure of sonic boom (Pa,real)
0.300 duration of sonic boom (seconds,real)
1 indication of whether or not to include
a dashed
outline of the refined grid region, (1) yes,
(2) no
(integer)
If a parameter does not apply to the particular problem, you must
type

0 for the value, careful to match number of digits.
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Example of another input file (bublayers) - this file contains the physical parameters for
the bubble layers and is read in by prop2o.f:

This file contains values for parameters in the bubble layers

06 number of bubble layers

01.0 (thickness, m) number of meters in depth for
bubble layer #1 (top) (real)

0841.0 speed of sound (m/s) in bubble layer #1 (real)
1000.0 density (kg/m~2) of bubble layer #1 (real)
01.0 (thickness, m) number of meters in depth for
bubble layer #2 (top) (real)

1214.0 speed of sound (m/s) in bubble layer #2 (real)
1000.0 density (kg/m~2) of bubble layer #2 (real)
01.0 (thickness, m) number of meters in depth for
bubble layer #3 (top) (real)

1375.0 speed of sound (m/s) in bubble layer #3 (real)
1000.0 density (kg/m~2) of bubble layer #3 (real)
01.0 (thickness, m) number of meters in depth for
bubble layer #4 (top) (real)

1446.0 speed of sound (m/s) in bubble layer #4 (real)
1000.0 density (kg/m~2) of bubble layer #4 (real)
02.0 (thickness, m) number of meters in depth for
bubble layer #5 (top) (real)

1483.0 speed of sound (m/s) in bubble layer #5 (real)
1000.0 density (kg/m~2) of bubble layer #5 (real)
03.0 (thickness, m) number of meters in depth for
bubble layer #6 (top) (real)

1497.0 speed of sound (m/s) in bubble layer #6 (real)
1000.0 density (kg/m~2) of bubble layer #6 (real)
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Example of output file (outputfile) - this file is created by prop2o.f along with the
HDF-formatted pressure value and intensity value files:

e 2 e 3k 2k 2k e o ok 3 3k 3 ok e 3k ok ok ok ok ok 3k ok 3k K ok 3k ok kK kK ok kK

1 for including bubbles or 2 for not

include bubble layers: 1

1 for including a bubble plume or 2 for not

include a bubble plume: 1

number of bubble layers: 6

thickness of bubble layer # 1 : 1.0 m
speed of sound = 841. m/s
density = 1000. kg/m~3

thickness of bubble layer # 2 : 1.0 m
speed of sound = 1214. m/s
density = 1000. kg/m~3

thickness of bubble layer # 3 : 1.0 m
speed of sound = 1375. m/s
density = 1000. kg/m~3

thickness of bubble layer # 4 : 1.0 m
speed of sound = 1446. m/s
density = 1000. kg/m"3

thickness of bubble layer # 5 : 2.0 m
speed of sound = 1483. m/s
density = 1000. kg/m~3

thickness of bubble layer # 6 : 3.0 m
speed of sound = 1497. m/s
density = 1000. kg/m~3

% 2k e 3 2 e ok 3 ok ek e ok ok A K ok K ok 3 3k ok ok 3 3 K K K X K oK Xk K K

x total distance is approximately 800.0

z total distance is approximately 750.5

3 2 3 e 3k 2k 3 ok o o 3Kk 3 ok ok K K 3K K K i e 3 3 3K e K ok K K kK K

1 for a flat ocean surface or 2 for wavy

ocean type: 1

the height of the swell waves

height = 0.00 meters

type of ocean wave profile:

(1) sinusoidal, (2) trochoidal, (3) combination #1: sine wave .5 wavelength

of trochoidal, (4) combination #2: sine wave .3 wavelength of trochoidal

type: O

% 3 2 2 3 e ke 3k 3 ok 3k ek kK 3K ok ke ok ok ok kK ok K K K 3 XK ok ok ok ok

the aircraft is traveling at Mach 2.4

the peak pressure of the sonic boom is 50.0 Pa

the duration of the sonic boom is 0.300 seconds
o 3 3k e 3 ok e e ke e Ak e 3 kK ok %k o % 3 Ak e 3 X e ok 3 e 3k 3K 3k ok o ok ok ok
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whether or not to include a dashed outline of the refined grid region
in the

output image, (1) yes, (2) no: 1
e 3¢ 3 3 e 3 ok 3k 3 3k 3k A e ke e 3k 3k A 3k ke XK 3 K e K ok Ak ok K ok ke ok

This program terminated normally.
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Appendix C.
Statistically Generated Ocean Surface Profile

Statistical methods are often used to formulate the profile of waves in a fully developed
sea.® Oceanographers attempt to study this type of sea surface by representing the irregular
pattern with a series of small-amplitude sine waves of varving size and phase.?? Information
from several references are brought together here to construct a formulation for the surface
profile as a function of the horizontal distance across the computational domain. Although
this formulation is not used in any of the final calculations, it is shown here for its potential
use as a tool for others whose computational constraints allow it.

Several one-dimensional spectrum models can be used to construct the ocean surface
profile for a fully developed sea. The one chosen to use here is the Bretschneider Spectrum
which is found in Ref. 57. In one direction on the ocean surface, the energy density S as a
function of ocean wave period T is written

_ 3T (H) oers(rr)

S C.
(T) @ (C.1)

where H is the average wave height and T is the average period. This function follows a
Gaussian distribution. In order to calculate the energy density as a function of frequency.
S(f). the relations S(f) = S(T)T?. f =1/T. and f = 1/T are applied to get

344f 7 (A)® _oers(f1)"
S(f)="—— : (2
hHr

where f is the average frequency. Now the energy density function follows a Rayleigh distri-
bution. Eq. (C.2) permits the calculation of the energy density amplitude for a particular
frequency, this amplitude is proportional to the wave amplitude squared,'®

AQ

S = . C.3

()= 557 (C:3)
where A is the ocean wave amplitude and A f is the frequency spacing. Solving for A. the
wave amplitude as a function of frequency can be written

i
2

(N2 R o
A(f) = Ii2Af3.44(1;’5) (f) 6—0.675(}‘/])] . (C4)

The surface profile can now be calculated as the sum of sinusoids. The equation used
to formulate the surface profile uses a finite number of frequencies nofregs for the sum of
the sine waves with their statistically corresponding amplitude, Eq. (C.4), but no phase
variation. This equation reads

nofreqs 7 fa
1) = Y. An(fa)eos| ] (©3)
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where 7 is the wave amplitude or distance from the mean water line. It should be noted that
the speed of the ocean wave c,, is frequency dependent. The deep water approximation for
the phase speed of the ocean surface wave is3!-57

o (f2) = 527 (C6)

where g is the gravitational constant. Eq. (C.5) now becomes

nofreqs 2
Z A, (fa) cos [( ™ fn) J . (C.7)

Plugging the values nofreqgs = 10, Af = 10 Hz. ¢ = 9.8 m/s*>. H = 1, and f =
Hz (picked to give maximum wave height of approximately 3.75 m) into Eq. (C.7), the
ocean surface profile is calculated to look like Fig. C.1. It is seen in the figure that the
profile is not very smooth nor does it have a distinct periodicity, qualities expected from
this statistically generated function, but qualities which are unmanageable in computational
work with particular constraints.

NS N~ NN AN S

Figure C.1: Complex statistically generated ocean surface profile using
10 frequencies.

Filters applied to the more simple ocean surface profiles to erase instabilities (explained
in Chapter 7) do not work on this complex profile. The simple profile filters exploit the
surface’s periodicity by killing the periodic offenders. the pixel values without any side
neighbors. Also. the grid surrounding the air-water interface is refined enough to accom-
modate the smoothness of the simple surface. On the other hand, the nonperiodicity of
the statistically generated surface makes it difficult to formulate a filter which kills all the
instabilities since the offending pixels are hard to recognize. Also the calculations would
become very computationally intensive by trying to refine the grid enough to accommodate
a relatively rough surface.

Again, it should be stated that the formulation given in this appendix is not actually
used in any of the final complex ocean surface calculations. It is shown here as a possible
useful tool and for the awareness of the complications of its use. In order to successfully
implement a statistically generated ocean surface profile, it would be necessary to either
formulate a general filter which would adjust parts of the surface to remove any instabil-
ities, use a very refined grid around the air-water interface to smooth out the grid-block
approximation of the surface. or possibly both.
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Appendix D.
Two-Dimensional Fourth-Order Computer Code

This appendix contains a subroutine in the Fortran code for the two-dimensional sim-
ulation of a sonic boom interacting with the ocean. The main code used for the 2nd-order
accurate simulation, prop2o.f£. is used for the 4th-order code but now with the subroutine
sochdiff2d replaced with a 4th-order accurate version.

Subroutine for two-dimensional wave equation. sochdiff2d:

subroutine sochdiff2d

include ’metergrid.common’
¢ This routine implements two types of finite difference routines
c At the interface: a 2-D routine similar to Sochacki, et al.
¢ Rest of the domain: 2-D central difference routine

¢ - accounts for uniform grid in x direction and non-uniform grid
in
c 2z direction

real b

real cnsqtsq,bbl,bb2
real pxx,pzz,tlconst,t2const
integer j,k,i
c print *,’you have entered the sochdiff2d subroutine’

do k = zmax-1,2,-1
do j = 2,xmax-1
¢ 1if not at any interface
if ((grid(j,k).eq.1).or.(grid(j,k).eq.4).or.
& (grid(j,k).eq.2).or.(grid(j,k).eq.5).or.
& ((grid(j,k).ge.10).and. (grid(j,k).1t.20))) then
if ((grid(j,k).eq.1).or.(grid(j,k).eq.4)) then
cnsqtsq = clsqtsq
endif
if ((grid(j,k).eq.2).or.(grid(j,k).eq.5)) then
cnsqtsq = c2sqtsqg
endif
do i=1,numlay
if (grid(j,k).eq.(i+9)) then
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cnsqtsq = csqtsq(i)

endif

end do

¢ 2nd-order for borders of grid
if ((k.gt.(zmax-2)).or.(k.1t.3)
& .or.(j.gt.(xmax-2)).or.(j.1t.3)) then
pxx = (p(j+1,k)-2.#p(j,k)+p(j-1,k))*oodelxsq

pzz = ((p(j,k+1)-p(j,k))/delz(k+1)

& - (p(j,k)-p(j,k-1))/delz(k))*2./(delz(k+1)+delz(k))
c 4th-order for interior of grid (not including interface)
else
pxx = (oodelxsq/12.)*(-p(j+2,k)+16.*p(j+1,k)
& -30.*p(j,k)+16.*p(j-1,k)-p(j-2,k))
ticonst = 2./(3.*(delz(k+2)+delz(k+1)+delz(k)
& +delz(k-1)))

t2const = 8./(3.*(delz(k+1)+delz(k)))
pzz = ticonst*((-p(j,k+2)+p(j,k))/(delz(k+2)+delz(k+1))

& + (-p(j,k-2)+p(j,k))/(delz(k)+delz(k-1)))
& + t2const*((p(j,k+1)-p(j,k))/delz(k+1)
& + (p(j,k-1)-p(j,k))/delz(k))
endif
ptmpl(j,k) = 2.*p(j,k)-ptmp2(j,k)
& + cnsqtsq*(pxx + pzz)
c if (ptmp1(j,k).gt.200.) then
c print*,’ptmpl1(’,j,’,’,k,’)=",ptmpl(j,k)
c endif
¢ the centered-difference approximation for a grid point
¢ lying near the interface

elseif ((grid(j,k).eq.3).or.(grid(j,k).ge.20)) then
if (grid(j,k).eq.3) then

bbl = b1l
if (numlay.eq.0) then
bb2 = b2
else
bb2 = bbub(1)
endif
endif

do i=1,numlay
if (grid(j,k).eq.(i+19)) then
bbl = bbub(i)
if (i.eq.numlay) then

bb2 = b2
else
bb2 = bbub(i+1)
endif
endif

end do
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¢ (add more if statements here if adding bubble layers)

ptmpl(j,k) = 2.*p(j,k)-ptmp2(j,k)

+(deltsq/a(j,k))*(oodelxsq*(b(j,.5,k,0.,zpos(k),
deltaz,delzinter,bbl,bb2,ranget,rangeb,zinter(j))*p(j+1,k)
—(b(j,.S,k,O.,zpos(k),deltaz,delzinter,bbi,bb2,ranget,
rangeb,zinter(j))+b(j,-.5,k,0.,zpos (k) ,deltaz,delzinter,
bb1,bb2,ranget,rangeb,zinter(j)))*p(j,k)
+b(j,—.5,k,0.,zpos(k),deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))*p(j-1,k))
+(v(j,0.,k,.5,2zpos(k) ,deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))*(p(j,k+1)-p(j,k))/delz(k+1)
-b(j,0.,k,-.5,2zpos(k) ,deltaz,delzinter,bbl,bb2,ranget,
rangeb,zinter(j))*(p(j,k)-p(j,k-1))/delz(k))*2./(delz(k+1)
+delz(k)))
c if (ptmp1(j,k).gt.200.) then

print*, ’ptmpi1(’,j,’,’,k,’)=",ptopli(j,k)
endif
endif
end do
end do

FRrEaRrrerrERrrRRRFRR

¢ advance the time
do k = 1,zmax
do j = 1,xmax
c print *,’you are now advancing the time in sochdiff2d’
ptmp2(j,k) = p(j,k)
p(j,k) = ptmpl(j,k)
end do
end do

return
end
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Appendix E.

Window Applied to Initial Waveform to Obtain
More N-Shaped Sonic Boom

This appendix contains a function applied in the Fortran code (prop2o.f. found in
Appendix B) for the two-dimensional simulation of a sonic boom interacting with the ocean.
This function w2 is used instead of the w function found in prop2o.f.

Function for window to help generate more N-shaped initial waveform. w2:

real function w2(x,wl)
c This is the weighting function for the initial pressure
¢ Homemade window
¢ x - the position imn the grid
¢ wl - half wavelength of initial pressure
real x,wl,pi
pi = 4.0 * atan(1.0)
if ((x.gt.wl).or.(x.1lt.-wl)) then

w2 = 0.0
elseif (((x.le.wl).and.(x.gt.(.75*wl))).or.
X ((x.ge.-wl).and.(x.1t.(-.75%wl)))) then

w2 = 3.9*cos(1.5%x/wl)*cos(1.5%x/wl)
elseif (((x.le.(.75%wl)).and.(x.gt.(.6*wl))).or.
x ((x.ge.(~.75%wl)) .and. (x.1t.(-.6*wl)))) then
w2 .152 + 1.37*cos(1.5%x/wl)
else
w2
endif
return
end

1.0
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