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ABSTRACT

Nonlinear wave propagation plays an important role in medical ultrasound due to the
high acoustic pressure amplitude levels employed: Measurements to comply with labeling
standards and FDA requirements for diagnostic equipment are performed in water, a medium
readily available and easy to use. To predict the fields in tissue, an attenuating and absorbing
medium, the FDA has established a derating factor of 0.3 dB/cm-MHz. This model, however,
is based on a simple linear model which does not take into account the nonlinearity of the
medium nor does it consider the effects of diffraction. This thesis provides some implications
when these effects are taken into account. The Khokhlov-Zabolotskaya-Kuznetsov (KZK)
model for nonlinear thermoviscous diffractive waves is developed. Using this model, the
acoustic pressure amplitudes along the beam axis for the fundamental and the second and third
harmonics are examined for a plane piston transducer of uniform excitation with an initially
sinusoidal source frequency of 2.25 MHz. First, a nonlinear field using the KZK model is
generated in water, and subsequently the linear derating factor is applied to estimate the in situ
fields in tissue. This result is then compared to the nonlinear fields generated with the KZK
model but now using tissue parameters to compare the two schemes used to estimate in situ
exposure. Due to the presence of nonlinearities, the dissipation of energy due to attenuation,
and acoustic saturation, the FDA derating underestimates the output pressure fields in tissue

using simulations based on the KZK model.
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CHAPTER 1
INTRODUCTION

The primary aim of this thesis is to study current calibration procedures when finite
amplitude wave propagation is considered. Acoustic pressure fields generated in a water
medium that are derated based on linear methods may not adequately describe the acoustic
pressure fields in tissue especially at higher acoustic pressure levels.

Accurate acoustic field propagation models are necessary to determine the in situ
exposure levels for the purpose of assessing safety requirements Qf diagnostic equipment.
Ultrasonic energy is absorbed by tissue where high intensities have the possibility of inducing
biological effects due to heating and cavitation aithough no damage has been reported from
clinical examinations [1].

Current calibration procedures are conducted in a water medium in which a hydrophone
is used to measure the acoustic pressure from which the intensity fields are calculated. An
estimate of the in situ intensity levels is subsequently performed by applying a derating factor
as established by the Food and Drug Administration [20]. A problem with the derating scheme
is that the FDA does not take into account nonlinear propagation which may result in an
incorrect estimate of the acoustic pressures and intensities.

The propagation of acoustic waves can be considered linear as long as the amplitude is
sufficiently small. However, Carstensen et al. demonstrated the presence of nonlinear fields
for the intensities and frequencies employed in diagnostic ultrasound [5]. That is, as a finite
amplitude wave is emitted in a water medium, the temporal acoustic pressure waveform will
begin to distort and generate harmonic frequency components. The extent of nonlinear effects
is related not only to the source acoustic pressure but is also dependent on the characteristics of
the media. Water is a nonlinear medium which possesses low attenuation so that significant
waveform distortion will occur at high acoustic pressure values. Biological tissue also exhibits

nonlinearities as discussed by Haran and Cook except that a tissue medium possesses higher



attenuation which is almost linear with frequency while water is low loss with a quadratic
dependence of attenuation on frequency [9]. As a result, measurements conducted in water do
not reflect fn situ exposure. Instead, experimental techniques as well as theoretical models are
needed to estimate in sifu exposure.

Experimental techniques are being explored to provide calibration that more closely
reflects tissue propagation [1, 18]. Lossy fluids such as castor oil and Dow Corning 710 [23]
may provide more useful information since they possess acoustic properties closer to tissue
than water. However, these media are difficult to .work with and possess attenuation
quadradically related to frequency, whereas soft tissue has been shown to be almost linearly
dependent with frequency. Preston et al. have taken an experimental approach to predict in situ
exposure by inserting an acoustical attenuator in the ultrasound field between the transducer
and hydrophone to mimic the path [18]. To compare and validate different techniques,
effective mathematical models are needed to deal with the propagation of finite amplitude
waves.

Theoretical models are useful to calculate fields resulting from nonlinear wave
propagation. The specific goal of this thesis is to compare axial fields using the FDA linear
derating scheme with nonlinear propagation in tissue medium. This is accomplished by first
generating a nonlinear field in water and subsequently applying FDA linear derating to the first
three frequency components. These derated fields are then compared to a nonlinear wave
generated using lossy tissue parameters. This procedure is repeated at different source acoustic
pressures to track the growth of harmonics in water and tissue media.

Some basic principles of ultrasound are first presented in Chapter 2 along with
motivation to describe accurately the acoustic fields since high amplitude acoustic fields may
induce biological damage. Chapter 3 introduces nonlinear propagation under lossless
conditions. The discussion is subsequently extended to include thermoviscous losses which

will be shown to play a significant role on the fields generated in water and tissue.



The theoretical model used to generate the nonlinear fields is the "Khoklov-
Zaboletskaya-Kuznetsov (KZK) equation. The numerical solution developed by Aanonsen [3]
has been shown to accurately describe the fields near the beam axis and is briefly described in
Chapter 4. The simulation results comparing the FDA derating criterion and the nonlinear
fields generated using lossy tissue parameters are presented in Chapter 5. The overall goal is to
provide some insights of the role of current calibratibn procedures and relate them to the

simulated fields in lossy media which resemble actual fields.



CHAPTER 2
ULTRASONIC EXPOSURE

Ultrasound is the branch of acoustics at frequencies above the range of audible sound.
Applications of this field are used extensively in sonar, nondestructive evaluation, and, of
interest here, medical technology [16]. The basic operating principles of ultrasound are
briefly presented in this chapter. The interaction of sound within tissue is also discussed
since high intensities and prolonged exposure may result in biological damage. As a result,

measurement guidelines have been established to provide exposure information [1, 20, 21].

2.1 Principles of Ultrasound

Acoustic waves are particle displacements in a medium due to a pressure disturbance.
As the wave propagates, the fluid particlés oscillate about the equilibrium point. Ultrasonic
waves are generated by converting electrical energy into acoustic energy through the
application of a piezoelectric material. This mechanical structure will resonate at a range of
frequencies when a disturbance impinges on its surface converting acoustic signals into
electrical energy. Diagnostic imaging systems use this principle to transmit and receive
acoustic waves that constitute a pulse-echo system [22]. A pulsed signal is usually emitted
into the body using a transducer. A portion of the energy is reflected back when a scattering
structure or an interface with a different impedance is encountered. The return signal is
received with the same transducer where the mechanical energy is now converted into
electrical energy. This echo s‘ignal is subsequently processed to yield an A-line representing
scattering strength as a function of time or depth This procedure is repeated for different
scan directions by steering of the beam such that the A-lines at different positions form a
composite two-dimensional image.

Modern imaging systems typically employ a number of transducer elements to

increase the resolution in the lateral direction and electronically steer the beam. However, a’



circular plane piston transducer provides a basic understanding of linear and nonlinear wave
propagation. The radiated field can be divided into the two regions as shown in Figure 2.1.
The Fresnel zone or the near-field is characterized by a well-collimated sound beam where
the wave fronts are approximated as plane waves [16] since beam spreading is not
appreciable for a plane piston transducer. This region also contains strong interference as
exhibited by the spatial oscillations along the beam axis in Figure 2.2. The region beyond the
last axial maximum is given by the transition distance, a2/A, is the‘called the Fraunhofer zone
or the far-field where the phase fronts are described by spherical spreading. The acoustic
pressure amplitude along the beam axis as a result decays with a 1/x dependence where X is

the axial distance from the transducer.

2 § Fresnel zone/ Fraunhofer zone/
N
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3 : >

Figure 2.1:  Near/far-field regions of a plane piston transducer where aZ/A
represents the transition distance [10].
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Figure 2.2:  Normalized axial acoustic amplitude pressure for a plane piston
transducer with a radius 1.0 cm and frequency of 5.0 MHz. The

axial distance is normalized by the Fresnel length, aZ/\.

As a wave propagates, acoustic energy is attenuated due to scattering and absorption.
However, scattering comprises a very small portion of the energy lost in a homogeneous
medium whereas absorption accounts for about 95% through thermal processes [19]. The
acoustic pressure amplitude of the wave decreases exponentially as a function of distance.

For example, given a monochromatic wave with peak acoustic pressure amplitude at the

source, p,, the resulting pressure waveform in the direction of the propagation, X, is given by
p(x) = p.e” @)™ 2.1)

where o is the attenuation coefficient for the medium, t is time, and k (=w/c) is the
propagation constant [10] with the angular frequency, ®, and the speed of sound, c. Figure

2.3 shows the effect of attenuation on the acoustic pressure amplitude along the beam axis for



a wave emitted by a plane piston transducer. Attenuation due to absorption mechanisms will

be discussed in greater detail in the next chapter as it pertains to nonlinear wave propagation.
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Figure 2.3: The effect of attenuation on the axial acoustic pressure field of
Figure 2.2. The attenuation factor is given by exp(-0x) where

o. = 0.8 Np/cm.

2.2 Biological Effects

Ultrasound has become a widely used diagnostic tool within the medical community
for blood flow analysis, detection of cancerous cells, fetal imaging, and even lithotripsy for
treatment of kidney stones. The interaction of ultrasonic waves with tissue is a complicated
phenomenon. As a result, numerous experiments have been performed to monitor the levels
at which biological damage is induced. Some of the known mcchanisms producing

bioeffects are cavitation, streaming, and thermal effects [1].



Cavitation is the interaction of small gaseous bodies with tissue where the bubbles
begin to oscillate in the presence of an acoustic field [1]. When the amplitude of the
oscillations exceeds the radius of the bubble at resonance, the bubble will collapse, causing
an inrush of fluid. It has been reported that these sudden implosions give rise to high
temperatures near the surface of the bubble [1]. Another mechanism closely associated with
cavitation is streaming in which the propagation of high amplitude sound waves around an
oscillating bubble creates eddy currents which are hypothesized to cause shearing against the
tissue wall [1]. Lesions have been produced in cat brains under continuous wave conditions
at 3 MHz and pressures of 8 MPa [1]. Commercial scanning equipment also has the
capability to produce lung hemorrhaging in adult mice [1]. Although biophysical damage
resulting from bubbles have been observed in laboratory animals, similar effects have not
been confirmed in humans.

Localized heating as a result of ultrasonic absorption has been the focus of extensive
research [1, 19, 20]. The optimal temperature for normal mammalian cells is 37°C where
temperature elevation increases the rate of enzymatic activity [17]. At temperatures
exceeding 45°C, these biochemical processes decrease and may cease, resulting in
coagulation of protein and eventually cell damage [1]. It has been observed from rats to
primates that high temperature and high exposure times can result in malformations in
newborns.

The bio-heat transfer equation is often employed to characterize local tissue heating
[19]. The resulting temperature rise in tissue is dependent on the acoustic beam profile and
the characteristics of the medium such as absorption, heat conduction, and perfusion. A
typical heating pattern associated in the near-field of a plane piston transducer is shown in

Figure 2.4 for a 2.25 MHz unfocused transducer [19].
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Figure 2.4: Typical heating pattern generated using the bio-heat equation for water
medium from an unfocused transducer with radius of 1.0 cm
operating at 2.25 MHz with an acoustic pressure of 500 kPa.

2.3 Output Labeling

The Food and Drug Administration (FDA) has developed guidelines on the maxfmum
allowable output fields that can be produced in situ by ultrasonic equipment. The next
generation of diagnostic equipment has the capabilities to produce significantly higher output
levels. As a result, the FDA along with professional societies such as the American Institute
of Ultrasound in Medicine (ATUM) has developed output display guidelines that provide the
clinician information in terms of thermal and mechanical indices regarding exposure levels

employed for different modes of operation [20].



A basic quantity for all measurements that describes the amount of energy present is

the time average intensity. Intensity is the average rate of flow of energy per unit area as

defined by

1 7T
I=c [ pudt =(pu), (2.2)

where T is the period of the temporal waveform [10]. For plane waves, the acoustic pressure

and particle velocity are related by the characteristic acoustic impedance, pc, so that Equation

(2.2) can be rewritten in terms of a single variable

2
=P (2.3)
2pc

For continuous waves of a single frequency, this quantity is also referred to as the temporal
average intensity (Ita) whereas for discrete operating modes, the intensity is given in terms of
an integral of the temporal waveform. The relevant parameters for a typical temporal
waveform are the compressional pressure (pc) and the rarefactional pressure (pr) which
represent the positive and negative peak acoustic pressures, respectively.

As shown earlier in Figure 2.2, the acoustic pressure fields vary with spatial position
and attenuation. However, only the in situ global maximum is specified in the output iabels
which are denoted by Ispta.3. The “.3” in the subscript is a derating factor of 0.3 dB/cm-MHz
that represents the estimate of acoustic fields in lossy media such as soft tissue.

Another measurement index has been devised to give a better indication of the

likelihood of nonthermal bioeffects such as cavitation. The mechanical index (MI) is given

by

S
]
4

(2.4)
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where p,, is the derated peak compressional pressure given in MPa and f is frequency in
MHz. Similarly, the thermal index (TI) is the ratio of total acoustic power to the power
required to raise the temperature of the medium by 1°C [20]. This index alerts the clinicain
regarding the potential for significant temperature rise during scanning. As higher output
Jevels are achieved, accurate characterization of the acoustic fields in tissue is necessary to

avoid any potential hazards to patients.

2.4 Tissue Derating

Acoustic output labels by manufacturers are specified in terms of in situ values to
provide an indication of output levels for tissue where the maximum allowable Igpa 3 is 720
mW/cm?2 [20]. However, all calibration measurements are made in water. To obtain an
estimate of acoustic quantities representative of typical low loss tissue, a derating factor of
0.3 dB/cm-MHz is subsequently applied. However, this estimate is based on a linear
propagation model which means that if the transducer output power is doubled, then the field
intensity will also increase by a factor of two. The AIUM bioeffects committee issued the

following statement regarding the role of output labeling of diagnostic equipment [1]:

Existing tissue models that are based on linear propagation may
underestimate acoustical exposures when significant saturation due to
nonlinear distortion of beams in water is present during the output

measurement.

The use of a linear propagation model may not be valid for high amplitudes in the presence
of nonlinear, thermoviscous wave propagation which may include saturation. This rheans
that at sufficiently high amplitudes used in diagnostic ultrasound, increasing power to the
transducer may not increase the measured output fields in a 1-1 ratio but simply result in

transfer of energy to the higher harmonic frequencies leading to greater frequency-dependent

11



absorption in the medium which may lead to inaccurate reporting of predicted in situ
exposure levels. To provide a basic understanding, the acoustic pressure is investigated since

this is the primary measured quantity upon which intensity and the mechanical and thermal

indices are based.
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CHAPTER3
NONLINEAR WAVE PROPAGATION

Linear acoustics deals with the ideal case of sound waves of infinitesimal amplitude.
However, when the amplitude of the wave becomes sufficiently large, nonlinear processes
such as harmonic distortion are observed. This chapter provides a basic understanding of
waveform distortion produced in a fluid medium under lossless conditions. The properties of
the medium are included through the Navier-Stokes equations [12] to account for the

thermoviscous losses due to attenuation and heat conduction.

3.1 Nonlinear Processes

The equations of motion are necessary to describe acoustic wave propagation in a ,
fluid since the fluid particles must obey physical laws. First, a continuity equation is needed
to describe the conservation of mass through a fixed volume. A second equation attributed to
Euler is simply a force balance equation that follows from Newton’s second law for a
specified mass of a fluid. Finally, the equation of state relates the internal restoring force of a
fluid subject to a deformation from an acoustic disturbance. The simplified continuity
equation, Euler’s equation, and the equation of state with diffraction and dissipation

neglected are as follows [10]:

dp , 9(pu) _

at+ o =0 3.1
Du dp

Bl il 2
th+8x 0 (3-2)
E:iq--{-u.a_g
Dt ot ox

p="p(p) (3.3)
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where p is the total pressure, p is the total density, u is the particle velocity while t is the time
coordinate and x is the spatial coordinate in the direction of propagation, respectively. These
equations are inherently nonlinear where the physical sources of nonlinearity are attributed to
convection and the pressure-density relationship which result in gradients between fluid
particles. In the ideal case, perturbations around the equilibrium point are small so that the
pressure and density were related by a constant. However, such an approximation is no
longer valid for finite amplitude waves where quadratic terms must be included in the

theoretical development. We begin by performing a Taylor series expansion on the equation

3 3 -p,)
p= Po"{('é%j] (P_po)‘*[[a_p%) :l (_p___éEo_)___*_m (3.4)
$p=po Sp=po

where p, and p,, are the ambient pressure and density in the fluid, respectively, and s is the

of state

entropy per unit mass. Assuming constant entropy, Equation (3.4) is rewritten as [16]

‘ 2
P—Po B P—Po
—p, = Al —2 |+ —| —— | +... 3.5
PR (po)+2(po) )

where the coefficients A and B are defined as
Sl}:po

el
=31

and the ratio of B/A is the nonlinearity parameter. Retaining up to the quadratic term in

QJIQJ QJI’U
N’

Equation (3.5), a second-order description relating density and pfessure is obtained

14



iE=ﬁ+B-p—=co(1+%-‘iJ (3.62)

dp P Pg C
where the following substitutions have been made:

dp

p=clp with ¢} = 20 (3.6b)

P_ PoC - (3.6¢)
u

Equation (3.6a) is borrowed from linear acoustics which is the pressure-density relation to the
first order with co, the speed of sound at infinitesimal amplitude. The latter expression is the
characteristic equation describing the impedance for plane wave propagation.

The speed of propagation due to a finite disturbance is, in fact, not spatially uniform
for all points but depends on the local particle velocity, u. Asa result, the general expression

that describes a plane wave propagating in lossless media is described by the following:

“dx
-at—- u(x)+c (3.7

and when combined with Equations (3.6), yields the fundamental relationship governing

nonlinear acoustics:

% = ¢, +Bu(x) (3.8)

where B = (1 + %) is the nonlinearity coefficient of the medium.

For an initially sinusoidal wave with a peak particle velocity magnitude, up, the
propagation speed as a function of distance is shown in Figure 3.1 where the positive region
travels faster than the negative half-cycle. As the particle velocity varies, compressional and
rarefactional regions are formed, i.e., dx/dt > ¢, when u > 0 and dx/dt < co when u < 0. At

the point where the particle velocity reaches its maximum amplitude, u = up, the propagation

15



speed is also a maximum with ¢ = ¢o + Bup. The trough is formed, u = -up yielding a
minimum propagation speed of ¢ = co - Bup. At points at which there is zero compression,

the propagation speed is simply ¢, which is the infinitesimal amplitude sound speed.

€0
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2 >
4 g

Spatial Position, x

Propagation Speed, dx/dt
(£
=

Figure 3.1: Wave distortion produced by nonuniform propagation where
up represents the peak particle velocity [8].

As a consequence of the nonuniform sound speed, the time wave profile will distort
as illustrated in Figure 3.2. As the disturbance moves further away from the source, the peak
in the time waveform of Figure 3.2(c) will eventually catch up with the trough forming a
shock wave and subsequently a breaking wave. However, multivalued functions are
physically unrealistic since they corresponds to three values of particle velocity for a single
- point x. That is. each spatial position and time (x,t) must uniquely determine particle
velocity, acoustic pressure, and density (u, p, p) for a wave to exist. The distance at which a
discontinuity is first observed is the shock formation distance. {4, which occurs when the

slope of the leading edge becomes infinite. As a result, the shock distance is

16



(3.9)

As mentioned, a multivalued function is impossible. However, loss mechanisms of the
medium exist to prevent further distortion near the discontinuity. As a result, dissipative

processes must be included to describe nonlinear wave propagation in fluid.
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Figure 3.2: Formation of a shock leading to a multivalued wave in the absence
of dissipative forces [8].

3.2 Dissipation

Thus far in this chapter, dissipation has been ignored. As an acoustic wave
propagates, the.acoustic pressure decreases with the distance traveled. Although attenuation
is, in part, due to scattering, the predominant mechanism for the transfer of energy to the
medium is in the form of heat. The primary mechanisms responsible for thermal dissipation
are classical causes such as viscosity and heat conduction and the nonclassical causes of

thermal and structural relaxation [10].
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Viscosity is a frictional loss that is attributed to the relative motion of adjacent fluid
particles. Shear viscosity is a measure of diffusion of momentum by molecules of higher
velocities to regions having lower velocities. However, bulk viscosity is the mechanical
energy lost due to compression or dilatation as the wave propagates and is, therefore,

dependent on frequency. The attenuation for a plane waves due to viscosity becomes
4
Oy =| =T, + 1, [V
viscos ity (3 ns nb) (3'10)

where 7, and 7, are the coefficients for shear and bulk viscosities, respectively [13].

Heat conduction is another classical mechanism which is attributed to fluctuations in
pressure that are not in thermodynamic equilibrium. As a result, temperature gradients
between the compressional and rarefactional portions of the waveform cause energy flow

from the hotter to the colder regions. The attenuation from heat conduction is given by

s = (Y~ 1) @3.11)

p

where X is the thermal conductivity and 'y“-cp/co is the ratio of specific heats [13].

Thermal relaxation is a nonclassical mechanism which represents losses due to the
rotational and vibrational motion of molecules in the presence of an acoustic disturbance.
However, thermal relaxation does not completely account for absorption for polar liquids
such as water. It has been demonstrated that thermal absorption vanishes near 4°C whereas
the overall absorption is not zero [10]. Instead, the excess absorption in water is attributed to
structural relaxation which results from the change in volume of the fluid rather than the
change in temperature.

The combined effect of the thermoviscous losses results in frequency-dependent
attenuation. For water, the attenuation increases with frequency squared for each unit
distance traveled while tissue has substantially greater loss but is only linearly related with

frequency.
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In the description of nonlinear wave propagation, it was shown that a multivalued
function results in the absence of dissipative forces for finite amplitudes. Since this is not
possible for ultrasonic waves, Euler's force expression no longer accurately describes the
thermodynamic properties of the medium. Instead, Equation (3.2) is replaced with the
Navier-Stokes equation and the heat transport equation given by Equations (3.12) and (3.13),

respectively,

du 4
__=—V o + Vz 312
pg =P (3ns m) u (3.12)
_ 2
dp_2d0 [ Y- gldP (3.13)
dt dt Y dt

where R is the relaxation [13]. The Navier-Stokes equation is the equation of motion which
includes viscosity, heat conduction and thermal relaxation to describe the loss of acoustic
energy in the medium. Equations (3.1), (3.12), and (3.13) are the governing equations of

nonlinear, thermoviscous wave propagation which will be used throughout this thesis.

3.3 Stages of Propagation

An example of waveform distortion in a nonlinear, thermoviscous medium at various
distances from the source is given in Figure 3.3. An initially sinusoidal, high amplitude wave
is emitted at the source and shown in Figure 3.3(a). As the wave propagates away from the
source, distortion becomes noticeable, and a shock is formed as seen in Figure 3.3(c). The
wave continues to steepen as the shock amplitude grows, and eventually the wave becomes a
sawtooth (Figure 3.3(e)). Further from the source, the wave begins to weaken where the
thermoviscous effects predominate due to an increase in the pressure gradients at the shock

front. The frequency-dependent absorption damps out the higher components at a faster rate
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returning the wave to its harmonic form but at a significantly reduced amplitude. In the old
age region of Figure 3.3(h), the wave is considered to be linear with infinitesimal amplitude

so that the principles of linear acoustics can be applied.

AVEAVEANERANA

(a) Source (b) Distortion tc) Shock (d) Maximum
Waveform Noticeable Formation Shock
x=0

(e) Full (f) Decaying (f) Shock (h) Old Age
Sawtooth Sawtooth Dispersing

Figure 3.3: The evolution of an initially sinusoidal wave in a nonlinear,

thermoviscous medium [8].

The severity of waveform distortion depends on a number of factors such as the amplitude of
the transmitted wave and the nonlinearity of the medium, whereas thermoviscous losses
dampen the generation of harmonics. The relative strength of distortion is, therefore,

expressed by Goldberg’s number [6] given by the following ratio:

F=—o . (3.14)

The  discontinuity distance. €4, as defined previously in Equation (3.9) depends on the

nonlinearity parameter and source amplitude. The discontinuity distance and dissipative



forces are viewed as competing entities since I' >> 1 signifies that nonlinear distortion
dominates with a fast rate of growth of harmonics. However, when I' << 1 finite amplitude
effects will not be appreciable since dissipative forces attenuate faster than the generation of
the frequency components.

Nonlinear acoustic wave propagation has been thus far described in the time domain.
However, it is often convenient to represent tixe acoustic pressure in the frequency domain.
As a sinusoidal wave with frequency f, begins to distort, harmonic frequencies are generated
at multiples of f, as shown in Figure 3.4. Just as harmonics are generated due to nonlinearity
of the medium, they are also attenuated due to absorption. Since attenuation in fluid is

frequency dependent, the higher harmonic pressure afnplitudes are damped-out at faster rates.
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Figure 3.4: The frequency spectrum of an initially sinusoidal wave of frequency
f, = 5 MHz. The fundamental is shown at 5 MHz (n=1) along with
its second and third harmonics at 10 (n=2), and 15 MHZ (n=3).
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3.4 Models

The classical treatment of nonlinear wave propagation in thermoviscous media was
developed by Blackstock [6]. A nonlinear wave equation was derived using the Navier-
Stokes formulation. The resulting Burgers’ equation [6] has been solved exactly using a
nonlinear transformation. Typically, spectral solutions are obtained by asymptotic
techniques where the Fubini solution [7] tracks the growth of harmonics in the near-field
while Fay's solution [7] shows the subsequent decay in the far zone where dissipative forces
predominate. Haran and Cook [9] derived an algorithm using the Burgers’ approach for
plane waves in nonlinear, lossy, nondispersive media and calculated the amount of distortion
for various biological media.

With a concern for safety, accurate models are needed to describe the acoustic output
in the near-field through the transition region. A nonlinear wave eduation is also needed to
account for diffraction due to the discontinuities along the outer rim of a plane piston
transducer. Recent investigations by Christopher and Parker [14] include a Burgers’ model
but with the addition of a diffraction operator using a Hankel Transform.

The approach taken in this thesis is to apply the well-studied KZK model [12] in
which the equation of state is expanded to the second order and thermoviscous loss terms are

subsequently linearized.
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CHAPTER 4
THE KZK EQUATION

This chapter presents a brief description of the Khokhlov-Zabolotskaya—Kuzﬁetsov
(KZK) equation [11] used to describe the pressure fields due to nonlinear, thermoviscous,
diffractive wave propagation. The KZK equation is derived under the parabolic
approximation which provides a reliable description in proximity to the acoustic axis. The
numerical solution to the KZK that is often employed was developed by Aanonsen [3] to
compute the near-field of a plane piston circular transducer. Subsequently, Baker et al. [4]
experimentally verified that this model can accurately predict the near-field in a water
medium at diagnostic frequencies. For a more complete discussion on the numerical

derivation of the KZK equation, the reader is referred to References [2,31.

4.1 KZK Equation
The nonlinear wave model that accounts for nonlinearities and dissipation while

including diffraction is as follows [2]:

19°p D 9 B 9%’
Vip-=—+ =- ,
P ¢ ot?  petot® p.er off

4.1)
where p is the acoustic pressure, V2 is the Laplace operator, and t is the time. The medium is
characterized by co, Po, D, and B which are the speed of sound for the small amplitude case,
density, dissipation factor, and a parameter which includes nonlinearity, respectively. In the
development of the KZK equation, several assumptions were made. For instance, a slowly
changing wave profile is assumed such that the wave must travel several wavelengths from

the source before distortion is appreciable. Furthermore, the wave components transverse to
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the direction of propagation are small such that a parabolic approximation is applied to the

well-collimated beam near the acoustic axis [11]. The resulting KZK equation in

dimensionless form is [2]

FP _1gap_ . OB _ 1, 3P
dws 4 * °ot* 21, o7’ (4.2)

where scaling has been introduced so that T = @t - kz is the retarded time and ¢ = /1, is the
axial propagation direction normalized by the Rayleigh distance for a periodic source [2]
defined by r, = ka2/2 where a is the radius of the transducer. Additional variables are used to

simplify the notation where P = p/ps iszthe acoustic pressure amplitude normalized by the

acoustic pressure of the source, o = 7 is the absorption coefficient at the frequency , {4

2poco
is the shock formation distance defined in Equation (3.9), and V2 .is the Laplacian operator

in the plane transverse to the direction of propagation.

4.2 Numerical Solution
An analytical solution to Equation (4.2) does not exist. As a result, Aanonsen [3]

developed a numerical method by seeking a spectral solution having the form

P(u,0,17)= i P_(u,0)sin(nt+ ¥, (u,0))
" 4.3)

P(u,0,17) = Z{gn (u,0)sinnt +h, (u,6)cosnt}

n=1

where u is the radial coordinate transverse to the direction of propagation while Py and ¥y

are the normalized acoustic pressure amplitude and the phase term for the nth harmonic

component, respectively. The Fourier coefficients are, therefore, gy = Pycos'¥y and hy =
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P,sin¥y, . Substituting Equation (4.3) into (4.2) results in an infinite set of coupled partial

differential equations relating harmonic terms gn and hy,.

[ n-1 hid
-a—g—'-‘- =—0(n)ry,g, + ZIH(Vihn) + Lo lE(gkgn-k - hkhn—k) - z(gp-ngp - hp—nhp) (4.42)

Jo 21d 2 p=n+l i

ah, _ L (g2q )4 Mo 1"—‘ S (h b b

_50—_—a(n)roh Ly ( J.gn) 21, '2_2 k8nk ~ &illa- k) p_zm( p-n€p ~ Ep-n p) (4.4b)
| n=12,.. .

In addition, the following substitution has been made for the transverse coordinate for the
case of an axisymmetric source:

0’ + 10
9g*  Eak

where &= w/a is the radial distance normalized by the transducer radius, a. The freqhency

V2= (4.5)

dependent absorption term is expressed as

a(n) = on° (4.6)

where @, is the attenuation at the fundamental frequency, n is the harmonic, and b is the

exponential frequency dependence. Viscous fluid such as water has a quadratic dependence
on frequency, b = 2 [10], while attenuation in tissue has been demonstrated to be almost
linearly related with b= 1.1 to 1.5 [9].

To numerically solve Equation (4.4), the infinite series must be truncated thus only
the first M harmonics are retained in the calculations resulting in a system of 2M nonlinear
equations. To obtain a stable numerical solution that describes the near-field oscillations,
finite difference techniques are used to perform the integration [3]. Absorption and

diffraction represented by the first and second terms on right side of Equation (4.4),
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respectively, are evaluated by a fully implicit method while the nonlinear terms are integrated

using an explicit method.
Figure 4.1 shows the rectangular mesh for the Implicit Backward Finite Difference

(IBFD) method in which the coordinate space is discretized using the following standard

approximations [15]:

g, = g'ri:il D
._a__g_“_ = -—1— gl

ao' AG (gn'i g'n‘n)

o2, _ 1 (i

_a_gé‘_ = ﬁ(gi;ﬂ - g-:'x.il-l)

2’8, _ (g, -2g +gitL)

3L (AE)

where 6 =iAc and & = jAE represent the axial and transverse coordinates, respectively. In
addition, gl ; is used to denote g,(§(i), 6()), j is the axial step index, i is the lateral step index

while Ac and AE are the axial and lateral step indices, respectively.

4.3 Boundary Conditions

The coefficients gn and hy for each harmonic are subsequently calculated along each
axial step using the coefficients of the previous axial position. However, boundary
conditions must be specified at the source transducer. For a plane piston transducer with a
uniform pressure distribution, the phase of the spectral solution for the first harmonic is zero,
¥ = 0, while the normalized pressure amplitude is one, Py = 1, with all higher harmonics
initialized to zero. As a result, the Fourier coefficients of Equation (4.3) at the source

boundary, =0 and 0 < § < a, are expressed as
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Figure 4.1: Coordinate system for the Implicit Backward Finite Difference method [9].

4.4 Numerical Implementation

The numerical solution to the KZK equation was implemented on a Sun SparcStation
330 using the programming language, C. The memory on this platform allowed the creation
of large data arrays since the coefficients, gy and hy for each frequency along the transverse
plan at an axial position were needed to calculate the coefficients at the next axial location.

As the IBFD method progresses along the axial direction, the normalized acoustic pressure
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amplitude with its corresponding phase for the first three harmonic components are written to
output files. Furthermore, variables used throughout the programs were declared double
precision to minimize errors from rounding and truncation of the data.

Numerical errors exist when implementing the solution to the KZK equation. The
primary sources of these errors are attributed to the truncation of the infinite series to M
harmonics. Simulations were performed by Aanonsen [3] showing effects of varying M on
the axial pressure fields. In this thesis, 20 harmonics are retained in the calculations since the
higher frequencies are small having a negligible contribution to the pressure amplitude.

The IBFD method is effective only when appropriate step sizes for Ac and A§ are
chosen in the axial and transverse directions, respectively. To guarantee stability for the
iteration at each axial step, A/AE2 < 0.5 is chosen. Otherwise, errors would accumulate
using the iteration scheme causing the harmonic amplitudes to grow without bound.
Aanonsen further calculated that with AG/AE2 = 0.4, the errors due to the iteration are less
than 4 x 10~ for the normalized pressure amplitude [3]. The iteration is halted when the
difference from the previous two results is less than 1 x 104.

Errors also arise from limiting the maximum value for & since a small selection would
result in the acoustic beam spreading, eventually reaching this boundary. The pressure
amplitude will, therefore, begin to oscillate in the transition region. As aresult, an Eqnax = 5.0
allows some beam spreading through the transition region where the phase fronts are no

longer well-collimated.

Step sizes of Ac = 2.5 x 10-4 and AE = 0.025 were selected to capture some of the
oscillations in the near-field within a reasonable amount of computation time or roughly 2.5h

on the SparcStation. Table 4.1 summarizes the parameters used in all of the simulations.
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Table 4.1: Simulation Parameters

M nurﬁber of harmonics retained 20

Ac | normalized axial step size 2.5x10-4
Omax maximum axial distance 0.75

A normalized radial step size 0.025
Emax maximum radial distance 5.0

For a more complete discussion of numerical instabilities and errors that may arise from
incorrect step size selection, harmonic truncation, and integration approximations for the

IBFD method, the reader is referred to References [3] and [15].

29



CHAPTER 5
SIMULATIONS

Nonlinear wave propagation is a complicated phenomenon whose behavior is
dependent on the distance from the source, amplitude of the source, and acoustic properties of
the medium, such as nonlinearity and attenuation. In addition, it is particularly difficult to
describe the near-field oscillations attributed to interference from a plane piston transducer. As
a result, simulations using the KZK model have been performed to assess the effects of the
different source pressure levels on the output fields in water and tissue media. The ultrasonic
fields used for this study are generated using a plane piston transducer with a radius of 19 mm

transmitting a continuous wave at a single frequency of f, = 2.25 MHz.

5.1 Tissue Derating
| Acoustic field calibrations are typically performed in water using a wideband
hydrophone to measure the output pressure along the beam axis of a transducer. However,
these output fields are not representative of in situ exposure levels since water is a low-loss
medium. Tissue exposure levels are, therefore, estimated by applying a linear derating factor
of 0.3 dB/cm-MHz. The objective of this section is to evaluate the validity of water
calibrations to predict in sifu exposure using the linear derating scheme prescribed by the FDA.
The KZK nonlinear wave model developed in the last chapter is utilized to generate

fields in water and tissue media as per the following three-step process:

(1) KZK simulations are performed using the acoustical properties of water to
mimic actual measurement conditions (water fields).

(2) Lihear derating of the water fields is performed to mimic the FDA in situ
field conditions (derated fields).
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(3) KZK simulations are performed using the acoustical properties of tissue to
mimic actual in situ field conditions (tissue fields).

The first step is to describe nonlinear wave propagation using the KZK model in a
water medium. The acoustical properties of water for the simulations are summarized in Table
5.1 where the density, the small amplitude speed of sound, and the nonlinearity parameters are
p = 1000 kg/m3, co = 1480 m/s, and B/A = 5.0, respectively [16]. In addition, water is a low-
loss fluid whose attenuation has a quadratic dependence on frequency with A = 0.00219
dB/cm-MHz2 [10]. The attenuation coefficient in water for'the simulations at the fundamental

frequency, f, = 2.25 MHz, is therefore 0.011 dB/cm.

Table 5.1: Simulation parameters for fields at the source frequency, f, = 2.25 MHz

Co  speed of sound 1480 m/s

p density | 1000 kg/m3
B/A nonlinearity parameter 5.0

Awater attenuation in water 0.011 dB/cm
Aderated attenuation in derated and tissue fields {0.68 dB/cm

The linear derating described in step (2) is now applied to the fields of step (1). The
attenuation coefficients using the FDA derating criteria for the frequencies components at 2.25,
4.50, and 6.75, are 0.675, 1.35, and 2.03 dB/cm, respectively, which result in the derated
axial acoustic pressure fields based on the FDA scheme. These fields are subsequently
compared to the axial fields generated in step (3) with attenuation of tissue to simulate in situ
conditions using the KZK model. The attenuation coefficient for tissue field simulations at the

fundamental frequency, 2.25 MHz, is 0.68 dB/cm with the attenuation for the higher
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harmonics linearly dependent on the frequency. The other acoustical parameters such as the
density, speed of sound, and nonlinearity are the same as those for water such that the only
variable is the source acoustic pressure ps.

A comparison of the derated fields to tissue fields is accomplished by evaluating the
peak acoustic pressure amplitudes of the diffractive maximum and last axial maximum
occurring in the near-field and transition regions, respectively. The ratio of the peak acoustic
pressure amplitudes for the derated, Pn derated> and tisSu€, P tissues fields gives a measure of

the comparison between the two quantities
Pn,ratio = Pn,derated / Pntissue n=1,2,3 (5.1)

where n denotes the frequency component with n=1 for the fundamental, n=2 for the second
harmonic, and n=3 for the third harmonic. Th_e acoustic pressure of the derated field
underestimates the acoustic pressure of the tissue field when the ratio of Equation (5.1) is less
than one (pp,ratio < 1)- Conversely, when the ratio is greater than one (Pp,ratio > 1), the
acoustic pressure for the tissue fields is overestimated by the derated fields while a value of
unity (pn ratio = 1) denotes perfect agreement between the two acoustic pressure fields being
compared.

To provide some insight into the rate of attenuation between the derated fields and the
tissue fields, the differences in the axial location of the peak acoustic maximum are also

compared. The axial shift is calculated as follows:
Zp,shift = Zn,tissue - Zn,derated n=1,2,3 (5.2)
where zq tissue and Zn tissue denote the distance of the peak acoustic pressures from the source

for tissue and derated fields, respectively, at the nth harmonic.
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The axial acoustic pressure field distributions throughout this chapter are presented in
terms of normalized acoustic pressure amplitudes. This normalization is incorporated within

the KZK simulations through the dimensionless quantity
P=p/ps (5.3)

where p is the acoustic pressure along the beam axis and ps is the acoustic pressure at the
source. Therefore, P provides a direct way to evaluate the effects of varying the acoustic
pressure amplitude emitted by the transducer on the growth of harmonics components along the

beam axis. Three cases, ps = 25, 250, and 2500 kPa, are discussed in detail in the following

sections.

5.1.1 Linear case, ps = 25 kPa

We start the ‘discussion by looking at the acoustic pressure fields generated from a
source transducer with a peak acoustic pressure amplitude of 25 kPa. This is referred to as the
linear case since the normalized acoustic pressure amplitude of the water fields does not exhibit
significant nonlinearities as shown in Figure 5.1. The acoustic pressure amplitude at the
fundamental frequency of 2.25 MHz, n=1, reaches an axial peak in the transition region at a
distance from the transducer face of 12.4 cm with a normalized peak acoustic pressure
amplitude of 1.97. The corresponding normalized peak acoustic pressures in this region for
the second and third harmonics at 4.50 (n=2) and 6.75 MHz (n=3) are 0.098 and 0.011,
respectively, located 23.6 and 32.8 cm from the source. An expanded view of the second and
third harmonics is provided in Figure 5.2. The degree of nonlinearity is determined by the

presence of the harmonics relative to the fundamental as given by the following percentage:
harmonic content (%) = P,/ Py * 100 =2,3 (5.4)
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Figure 5.1:  Normalized axial acoustic pressure amplitude vs. axial distance for water
fields at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
ps = 25 kPa.
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Figure 5.2:  Normalized axial acoustic pressure amplitude vs. axial distance for water
fields at frequencies 4.50 (n=2) and 6.75 MHz (n=3) when ps = 25 kPa.
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where P, is the normalized acoustic pressure of the nth harmonic while P is the normalized
acoustic pressure of the fundamental component (n=1) at 2.25 MHz. Using this criterion, the
harmonic content of frequencies at 4.50 and 6.75 MHz represent less than 5 and 0.6%,
respectively, at the last axial maximum in the transition region.

The diffractive maxi;num in the near-field occurs 4.3 cm from the source with a
normalized acoustic pressure amplitude of 1.93. The presencé of the harmonics is significantly
less in this region than the transition region where the peak acoustic pressure maxima are
located 6.92 and 6.14 cm from the source with amplitudes of 0.015 and 0.00021, respectively,
yielding harmonic contents of 1 % and 0.01%, thus demonstrating that the presence of
harmonic components is not significant in water fields for ps=25 kPa.

The FDA linear derating applied to the water fields yields the derated field plots of
Figures 5.3 and 5.4. The derating process has reduced the peak acoustic pressure amplitudes
of all frequency components. The spatial dependence of attenuation has a greater impact
further away from the source so that the axial éeak acoustic pressure amplitude for the
fundamental frequency component occurs closer to the source than it did in the water field
calculations. In addition, the higher-frequency terms at 4.50 and 6.75 MHz undergo greater
reductions in the acoustic pressure amplitudes due to the frequency dependence of attenuation.

The normalized peak acoustic pressure amplitudes in the near-field for the fundamental
and the second and third harmonics are 1.38, 0.0071, and 0.00064, respectively, at axial
ranges of 4.26, 4.69, and 5.02 cm. The resulting harmonic content using Equation (5.4) is
now 0.5 and 0.005% for n=2 and n=3, respectively. Similarly, the harmonic content in the
transition region is determined. The normalized peak acoustic pressures at the last axial
maxima for frequencies at 2.25, 4.50, and 6.75 MHz are 0.830, 0.0082, 0.00013,
respectively, with corresponding axial ranges of 10.1, 13.2, and 14.5. The resulting
harmonic content is 1% for the second harmonic and 0.05% for the third harmonic. Linear
derating, as a result, decreases even further the level of harmonic presence with respect to the

fundamental so that distortion along the beam axis is not appreciable.
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Figure 5.3: ~ Normalized axial acoustic pressure amplitude vs. axial distance for derated
fields at frequencies 2.25 (n=1) and 4.50 MHz (n=2) when ps = 25 kPa.
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Figure 5.4:  Normalized axial acoustic pressure amplitude vs. axial distance for derated
fields at frequencies 4.50 (n=2) and 6.75 MHz (n=3) when ps = 25 kPa.
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The tissue fields along the beam axis are observed in Figures 5.5 and 5.6 when the
nonlinear model is used to generate the acoustic pressure using tissue parameters (see Table
5.1). The axial plots of the tissue fields exhibit features similar to the derated fields with the
spatial peak acoustic pressure of the fundamental occurring in the near-field while spatial peaks
of the second and third harmonics lie in the transition region. The normalized peak acoustic
pressures, in the transition region, for the higher frequency components have amplitudes of
0.0085 and 0.00014 for 4.50 and 6.75 MHz located 13.3 and 14.6 cm from the source,
respectively, while the fundamental has an amplitude of 0.837 located 10.2 cm form the
source. This results in a harmonic content of 1% for n=2 and 0.02% for n=3 using Equation
(5.4) which are almost identical to the derated field case.

The peak acoustic pressures of the derated fields are now compared with the respective
tissue fields. The near-field and transition regions are examined based on Equations (5.1) and
(5.2). The ratios of the peak acoustic pressure amplitudes, Pn,ratio» in the near-field are 0.99,
0.99, and 0.97 for frequency components at 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3),
respectively, while the difference in the axial ranges, zpshift, are 0.0, 0.05, and 0.01 cm. In
the transition region, pp ratio are now 0.99, 0.96, 0.93 for n=1, 2, and 3, respectively, with all
of the frequency components having an axial shift of 0.1 cm.

Tables 5.2 and 5.3 summarize the normalized acoustic pressures at 2.25, 4.50, and
6.75 MHz in the near-field and transition regions, respectively. The last row referred as
“comparison” summarizes the results for py raio and zp shift represented by the first and second
numbers of the each cell, respectively, for each frequency component. In all cases, the ratios
for pn.ratio are 0.93 or greater while the axial shifts, zy shift, are 0.1 cm or less, demonstrating
that for a source pressure of 25 kPa, nonlinear distortion does not show significant disparities
in the two derating schemes. This is, in part, due to the low acoustic pressure of harmonics
along the beam axis such that most of the energy is maintained in the fundamental frequency.
As a result, nonlinear distortion does not significantly affect the estimates for in situ acoustic

pressure amplitudes under the FDA derating scheme.
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Figure 5.5:  Normalized axial acoustic pressure 'amplitude vs. axial distance for
tissue fields at frequencies 2.25 (n=1) and 4.50 MHz (n=2) when ps = 25 kPa.
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Figure 5.6:  Normalized axial acoustic pressure amplitude vs. axial distance for tissue
fields at frequencies 4.50 (n=2) and 6.75 MHz (n=3) when ps = 25 kPa.
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Table 5.2:

Normalized peak acoustic pressure amplitudes and their respective axial
ranges for derated and tissue fields in the near-field at ps=25 kPa

fundamental (n=1)

amplitude position(cm)

second harmonic (n=2)

amplitude position(cm)

third harmonic (n=3)

amplitude position(cm)

derated fields 1.38 4.26 0.0071 4.69 0.000064 5.02
tissue fields 1.39 4.26 0.0071 4.74 0.000066 5.03
comparison 0.99 0.0 0.99 0.05 0.97 0.01

Table 5.3: Normalized peak acoustic pressure amplitudes and their respective axial

ranges for derated and tissue fields in the transition region at ps=25 kPa
fundamental (n=1) second harmonic (n=2) | third harmonic (n=3)

amplitude position(cm) | amplitude position(cm) | amplitude position(cm) |

derated fields 0.830 10.1 0.0082 13.2 | 0.00013 14.5
tissue fields 0.837 10.2 0.0085 13.3 | 0.00014 14.6
comparison 0.99 0.1 0.96 0.1 | 0.93 0.1
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5.1.2 Moderate amplitude case, ps = 250 kPa

In this section, the acoustic pressure fields generated from a source with a peak acoustic
pressure amplitude of 250 kPa are examined. The water field simulations shown in Figure 5.7
illustrate the presence of harmonics along the beam axis. The axial behavior of acoustic
pressure field at the fundamental frequency exhibits significant oscillation in the near-field at
which the spatial peak acoustic pressure occurs 4.3 cm from the source with a normalized
amplitude of 1.92. The peak acoustic pressure amplitudes of the second and third harmonics in
this region are 0.146 and 0.0187, respectively, both occurring at an axial range of 4.8 cm. As
a result, the harmonic content of the 4.50 and 6.75 MHz components represent 8 and 0.1% of
the peak acoustic pressure amplitude at the fundamental frequency at 2.25 MHz. Steady
growth of harmonics occurs in the transition region where the peak acoustic pressure -
amplitudes for the fundamental and the second and third harmonics are 1.89, 0.687, and 0.412
at axial ranges of 11.8, 17.3, and 19.4 cm, respectively. The harmonic content is significantly
higher compared to the near-field with 36% for the second harmonic and 22% for the third
harmonic of the peak acoustic pressure at the fundamental frequency.

The acoustic pressure fields for the derated fields are shown in Figure 5.8 with an
expanded view of the harmonics in Figure 5.9. The derating process has reduced the peak
acoustic pressures for the frequency components which now have normalized amplitudes in the
near-field of 1.38, 0.0699, and 0.00621 for n=1,2 and 3, respectively, with corresponding
axial ranges of 4.3, 4.7, and 5.0. Applying Equation 5.4, the resulting harmonic content for
the second and third harmonics is 5 and 0.5%, respectively. Greater losses due to spatial
attenuation at the last axial maxima are observed yielding peak acoustic pressures for the 2.25,
4.50, and 6.75 MHz frequencies located at 10.1, 12.6, and 13.7 cm from the transducer,
respectively, with normalized amplitudes of 0.815, 0.0742, and 0.0104. The harmonic
content in the transition region is reduced to 9 and 1% for the second and third harmonics,

respectively.
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Figure 5.7:  Normalized axial acoustic pressure amplitude vs. axial distance for water fields
- at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
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Figure 5.8: Normalized axial acoustic pressure amplitude vs. axial distance for derated
fields at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
ps = 250 kPa.
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Figure 5.9: Normalized axial acoustic pressure amplitude vs. axial distance for derated
fields at frequencies 4.50 (n=2) and 6.75 MHz (n=3) when ps = 250 kPa.

Figures 5.10 and 5.11 show the acoustic pressure amplitudes along the beam axis for
the tissue fields. The normalized peak acoustic pressure amplitude for the fundamental is 1.39
at an axial range of 4.26 while the amplitudes for the second and third harmonics are 0.0710
and 0.00642, respectively, at ranges of 4.64 and 5.03 cm (see Table 5.4). This leads to almost
the same harmonic content as the derated field case with the second and third harmonics
comprising 5 and 0.5% of the fundamental, respectively. Once again, the transition region
exhibits greater harmonic presence compared to the near-field with the harmonic content for the
second and third harmonics now 10 and 2% of the peak acoustic l;ressure amplitude at the
fundamental frequency, respectively.

The acoustic pressure amplitudes along the beam axis are dominated by the fundamental
frequency component for both derated and tissue fields with a source acoustic pressure of 250
kPa. In addition, the ratios of the peak acoustic pressure amplitudes are very close to unity

where pi ratio is 0.99 and 0.98 in the near-field and transition regions, respectively, and the
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corresponding z1 shift is 0.0 and 0.1. The ratios of the acoustic pressures for the second and
third harmonics in the near-field are also close to unity where p2 ratio and p3 ratio are 0.98 and
0.97, respectively, while the corresponding z2 shift and z3 shif; are both 0.05 cm. However,
the derated fields begin to underestimate the acoustic pressure amplitudes of the tissue fields in
the transition region since the ratios, pa,ratio and p3 ratio, at the last axial maximum are 0.89 and
0.78, respectively. In addition, axial shifts of 0.6 and 0.8 are observed for z shift and z3 shift.
respectively, with the maximum of the derated fields located closer to the source. The
combination of low peak acoustic pressure amplitudes with axial shifts moving the peaks closer
to the source indicate a faster rate of attenuation. As a result, the derated fields emitted from a
source with an acoustic pressure of 250 kPa leads to the underestimation of tissue fields with

the greatest deviations in the transition region.
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Figure 5.10: Normalized axial acoustic pressure amplitude vs. axial distance for tissue
fields at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
ps = 250 kPa.
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Figure 5.11:  Normalized axial acoustic pressure amplitude vs. axial distance for tissue
' fields at frequencies 4.50 (n=2) and 6.75 MHz (n=3) when ps = 250 kPa.



Table 5.4:

Normalized peak acoustic pressure amplitudes for derated and tissue
fields in the near-field at ps=250 kPa

fundamental (n=1)

amplitude position(cm)

second harmonic (n=2)

amplitude position(cm)

third harmonic (n=3)

amplitude position(cm)

derated fields 1.38 426 | 0.0699 4690 | 000621 4.8
tissue fields 1.39 4.26 0.0710 4.74 0.00642 5.03
comparison 0.99 0.0 0.98 0.05 0.97 0.05
Table 5.5: Normalized peak acoustic pressure amplitudes for derated and tissu
fields in the transition region at ps=250 kPa -
fundamental (n=1) second harmonic (n=2) | third harmonic (n=3)
amplitude position(cm) | amplitude position(cm) | amplitude position(cm)
derated fields 0.815 10.1 0.0742 12.6 0.0104 13.7
tissue fields 0.831 10.2 0.0829 13.2 0.0133 14.5
comparison 0.98 0.1 0.89 0.6 0.78 0.8

5.1.2 High Amplitude Case, ps = 2.5 MPa

Thus far, only the source acoustic pressures of 25 and 250 kPa have been examined.

However, when the acoustic pressure from the source is increased to 2.50 MPa, a severely

distorted wave is generated in water where there is a dramatic increase in the acoustic pressure

of the harmonics. The spatial peak acoustic pressures for the 2.25, 4.50, and 6.75 MHz

frequency components lie in the near-field as shown in Figure 5.12 with corresponding

normalized amplitudes of 1.56, 0.660, and 0.378 occurring at 4.16, 4.50, and 4.59 cm from

the source. The second and third harmonics experience significant harmonic content of 42 and

24% relative to the fundamental. The peak acoustic pressure in the transition region are located
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at axial ranges of 8.95, 9.28, and 9.33 cm and corresponding normalized amplitudes of 0.754,
0.406, and 0.233 for the fundamental and the second and third harmonics, respectively.
Although, the peak acoustic pressure amplitudes in the transition region are smaller than the
peak acoustic ‘pressures in the near-field, the harmonic content at the last axial maximum is
53% for the second harmonic and 31% for the third harmonic of the peak acoustic pressure
amplitude at the fundamental component.

The 0.3 dB/cm-MHz derating applied to the water fields results in the derated fields
shown in Figure 5.13. The acoustic pressure amplitudes are provided in the first row of
Tables 5.7 and) 5.8 for the near-field and transition regions, respectively. The acoustic
pressures in the near-field for the fundamental and the second and third harmonics are 1.22,
0.329, and 0.130, respectively, occurring at the corresponding axial ranges of 2.7, 4.5, and
4.6 cm. The harmonic content using Equation (5.4) is, therefore, 27 and 11% for n=2 and
n=3, respectively. As the acoustic pressures of the frequency components in the transition
region are examined, the peak amplitudes at 2.25, 4.50, and 6.75 MHz are 0.386, 0.099, and
0.012, respectively, located 8.4, 9.0, and 9.1 cm from the source. The corresponding
harmonic content for n=2 and n=3 is 26 and 3%, respectively, which are now lower compared
to the near-field of the peak acoustic pressure amplitude at the fundamental component.

The normalized acoustic pressure amplitudes for the tissue fields are shown in Figure
5.14. The oscillations of the peak acoustic pressure in the near-field are also the spatial peaks
at located 2.7, 4.6, and 4.7 cm for the source for the frequency components at 2.25, 4.50, and
6.75 MHz, respectively, with normalized amplitudes of 1.25, 0.426, and 0.226. The resulting
harmonic content is 34 and 18% for n=2 and n=3, respectively. In the transition region,
. however, the harmonic components have normalized peak acoustic pressures of 0.194 and
0.113 at axial ranges of 10.3 and 11.0 cm for frequencies at 4.50 and 6.75 MHz, respectively,
while the fundamental has an amplitudes of 0.500 at a range of 8.80 cm. This results in a

harmonic content of 39% for n=2 and 23% and n=3.

46



water fields, 2.50MPa

T .

—
N

-

o
=)

Normalized Axial Acoustic Pressure
=
o0

o
PN

e
¥

0
Axial Distance, z (cm)

Figure 5.12: Normalized axial acoustic pressure amplitude vs. axial distance for water
fields at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
ps = 2.50 MPa. :
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Figure 5.13:  Normalized axial acoustic pressure amplitude vs. axial distance for derated
fields at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
ps = 2.50 MPa.
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Figure 5.14: Normalized axial acoustic pressure amplitude vs. axial distance for tissue
fields at frequencies 2.25 (n=1), 4.50 (n=2), and 6.75 MHz (n=3) when
ps = 2.50 MPa.

As just shown, the harmonic content of acoustic pressure amplitudes are significant
throughout the axial beam at an acoustic source pressure of 2.50 MPa. Hdwever, the derated
and tissue fields are now analyzed to compare agreement between the two fields at the high
source level (Tables 5.6 and 5.7). The peak acoustic pressure for the derated fields in the near-
field at the fundamental is the only value that compares favorable with the acoustic pressure for
the corresponding tissue fields, i.e., P1.ratio=0.98 and zi shifi=0.0. However, the peak
acoustic pressures between the derated and tissue fields of the harmonics begin to deviate
significantly in this region since the ratios for p2.ratio and P3,ratio are now 0.77 and 0.58
respectively with corresponding axial shifts of 0.10 and 0.14 cm. The derated and tissue fields
are further degraded in the transition region where the last axial maxima have pj ratio= 0.77,
P2.ratio=0.51, and p3 ratio=0.11. In addition, the axial shifts are aléo quite severe with

differences of 0.4, 1.4 and 1.9 for z shift, Z2,shift, and z3 shift, respectively.
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Table 5.6:

Normalized peak acoustic pressure amplitudes for derated and tissue
fields in the near-field at ps=2.50 MPa

fundamental (n=1)

amplitude position(cm)

| second harmonic (n=2)

amplitude position(cm)

third harmonic (n=3)

amplitude position(cm)

derated fields 1.22 2.66 0.329 4.45 0.130 4.55
tissue fields _ 1.25 2.66 0.426 4.55 0.226 4.69
comparison 0.98 0.0 0.77 0.10 0.58 0.14
Table 5.7: Normalized peak acoustic pressure amplitudes for derated and tissue
fields in the transition region at ps=2.50 MPa
fundamental (n=1) second harmonic (n=2) | third harmonic (n=3)
amplitude position(cm) | amplitude position(cm) | amplitude position(cm)
derated fields 0.386 8.37 0.099 8.95 0.012 9.1
tissue fields 0.500 8.80 0.19 10.3 0.113 11.0
comparison 0.77 0.43 0.51 1.4 0.11 1.9

Tables 5.6 and 5.7 summarize the simulation of the acoustic pressure amplitudes in

derated and tissue fields and compares the peak amplitudes at a source pressure of 2.50 MPa.

It is evident that the linear derating scheme results in faster attenuation resulting an

underestimation of the peak acoustic pressure amplitudes of tissue fields using tissue

parameters.
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5.2 Discussion

According to linear theory, as the acoustic pressure at the source is increased the
acoustic pressure fields will increase proportionately. However, when dealing with high
amplitude waves in a low-loss, nonlinear medium such as water, the acoustic waves will begin
to saturate. As a result, there will no longer be a one-to-one correspondence between the
propagated wave and the source. Rather, more energy will be transferred to the harmonic
components resulting in greater waveform distortion. However, for an attenuating medium,
significantly higher acoustic source pressures are necessary before the onset of acoustic
saturation. In addition, the growth of harmonics is inhibited. Since attenuation losses are
frequehcy dependent, this results in less overall attenuation than occurring in a lossless medium
where more energy is transferred to higher frequencies. As a result, for an attenuating medium
the fundamental component predominates. However, the FDA derating scheme [20] assumes a
linear wave propagation model which was shown to be inadequate when finite amplitude
waves are considered. Linear models have been shown to underestimate the in situ acoustic
pressure levels as suggested by the AIUM bioeffects committee [1]. As a result, extreme

caution must be exercised when water calibrations are performed to estimate the fields in tissue.
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CHAPTER 6
CONCLUSIONS

The calibration scheme established by the FDA based on linear wave propagation that
is used to predict in situ exposure was examined. The main goal was to assess the derating
scheme which is based on acoustic pressure measurements made in water. To account for
wave distortion, the well-established Khokhlov-Zabolotskaya-Kuznetsov model for
nonlinear, diffractive wave propagation in thermoviscous media was applied to predict the
harmonic content along the beam axis of a plane piston transducer.

The behavior of the wave was shown to be dependent on pressure at the source since
this quantity is inversely proportional to the discontinuity distance, £{4. That is, as the
transmitted pressure amplitude is increased, the shock distance is decreased resulting in
greater waveform distortion. However, attenuation due primarily to thermoviscous losses
reduced the effects of nonlinearity since the higher-frequency components of the acosutic
pressure were attenuated at a faster rate.

Waveform distortion was shown not to be appreciable in water at lower source
amplitudes. As a result, the in situ acoustic pressure fields using the FDA derating scheme
did not exhibit significant deviation for the first three harmonics from the nonlinear fields
generated using tissue field parameters. However, the presence of harmonics was noticeable
in water at amplitude levels typically employed in diagnostic ultrasound. As the linear
derated fields were compared to tissue field propagation, there was disagreement between the
acoustic pressure amplitudes of the first three harmonics in the near-field with the greatest
differences occurring in the transition region. As the amplitude was increased, the acoustic
pressure fields generated in water began to saturate. As a result, the linearly derated fields no
longer accurately described fields in lossy media which resulted in the underestimation of the

pressure fields in tissue.
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The current trends of ultrasound equipment have been to increase the output levels
delivered since no biological effects have been produced in the clinical setting. This does not
mean, however, that damage is not possible. As a result, accurate models for the emitted
fields are needed to assess the safe operating levels.

Further work in this field is needed to account for a more realistic clinical setting. For
instance, the theory must be modified to include focused sound beams that are used in
virtually all examinations. In addition, the homogeneous model does not reflect the typical
propagation path for an acoustic wave. Rather, a wave must pass through skin, fat, muscle,
and even amniotic fluid before it reaches the region of interest. As a result, these layers
should be included in future nonlinear modeling. Once an accurate field description has been
achieved, the intensity distribution can be subsequently calculated and used to estimate
temperature rise.

In summary, FDA derating criteria do not reflect the fields present in situ when a
nonlinear propagation model is considered. Only through accurate prediction of finite

amplitudes waves in tissue can the safety of diagnostic ultrasound be guaranteed.
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APPENDIX A
KZK SIMULATION PROGRAMS

/* kzkl.c */

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "mystruct.h"

#define PI 3.141592654

/*************************************************************************

* MAIN *
***************************************************************************/
void main()
{ .
double a, £, co, po;
double pressure;
double BoA, 14d;
double alpha, ro;
double fnum; /* frequency dependence */
double wavenum;

double abp; /* params */
double nonl;
double gain;
double delta;

double r;

double s; /* compression factor */

int m; /* number of harmonics */
/* used in calculations*/

double zstep; /* steps */

double xstep;
int imax;

double zmax;
double xmax;
int filout; /* # of harmonics printed */

long int 3j;

int i, eta;

double z; /* axial coordinate */
int k, 1, n;

double ampl, phl;

char summary[20];
FILE *fsumm;

char nl[20], n2[20], n3[20];
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extern
extern
extern
extern
extern
extern
extern

MxStru
Cfstru

matrix
coef =

FILE *fnl, *fn2, *£fn3;
char dfile3[20};

FILE *fptr3;

char dfile2[20];

FILE *fptr2;

char dfiled([20];

FILE *fptrd;

char strnum{5];

void initial();:
void profile();
void init_matrix():
void nextc();

double phase();
double ampltud():;
void ltoal);:

ct *matrix;
ct *coef;

= (MxStruct *)calloc(l, sizeof (MxStruct));

(cfstruct *)calloc(l,

sizeof (CfStruct));

/************************************

*

INITIALIZE VARIABLES

*

************************************/

scanf("%le %*[{~\n]l\n",
scanf ("%$le %*["\nl\n",
scanf("%le %*["\n]J\n",
scanf ("\n");

scanf ("%le $*[~\n]\n",
scanf("%le %*["\n]l\n",
scanf("%le %*[~\nl\n",
scanf("%le $*["\n]\n",
scanf("%le %*[*\n]\n",
scanf ("\n");

scanf("%le $*[~\nl\n",
scanf("%le %*{"\nl\n*,
scanf("%le $*["\n]l\n",
scanf("%le %*["\n]\n*,

&pressure) ;
&a);
&£);

&BOA) ;
&alpha);
&fnum) ;
&co) ;
&po) ;

&zmax) ;
&zstep);
&xmax) ;
&xstep);

scanf ("%d4d $*[~\n]\n", &m);

wavenum = 2*PI*f/co;
ro = (wavenum*a¥*a)/2;

/* wave number */
/* Rayleigh distance

/* discontinuity distance */

1d = 2*po*co*co*co/( (2 + BoA)*(2*PI*f)*pressure );

gain = 1/(alpha * 1d);
nonl = 2*ro/l4;

s = 1.;

delta = 1.;

/* Goldberg's number */
/* A in sims */

r = zstep/(xstep*xstep);
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imax = (int) (xmax/xstep);
j=1;

k=1;

filout = 3;

strcpy (summary, "README. txt");
if (({ fsumm=fopen (summary, "a")) == NULL)

{ printf ("COULD NOT OPEN README.txt");

exit (0); }

fprintf(fsumm,"INITIAL CONDITIONS:\n\n");
fprintf (£summ, "\tINITIAL PRESSURE\t p = %.3le\n", pressure};
fprintf (fsumm, "\tTDR radius\t\t a = %.31le\n", al;
fprintf (fsumm, “\tWave number\t\t k = %.3le\n", wavenum)};
fprintf (fsumm, "\tLinear Absorption\t alpha = %.3le\n", alpha);
fprintf (fsumm, "\tFrequency dependence\t b = %.3le\n", fnum) ;
fprintf (£summ, "\tDiscont. dist\t\t 14 = %.3le\n", 14);
fprintf(fsumm,“\tRayleigh length\t\t ro = %.3le\n", ro);
fprintf(fsumm,"\tspeed of sound\t\t co = %.3le\n", co);
fprintf(fsumm,“\tdensity of medium\t po = %.3le\n", po);
fprintf(fsumm,"\tNONLINEARITY PARAM\t B/A = %.3le\n\n", BoOA);

fprintf (£summ, "\tGAMMA = %.3le\n*, gain);

fprintf (fsumm, "\tA = %.3le\n\n", nonl);

fprintf (£summ, "\tZmax = %.31le\n\t Zstep %.31le\n", zmax, zstep);
fprintf (f£summ, "\tXmax = %.31le\n\t Xstep %.3le\n", xmax, xstep):
fprintf (fsumm, "\tImax = %d\n\t M = $d\n", imax, m);

fprintf (fsumm, "\tR = %.3le\n", r); :

fclose(fsumm) ;

strcpy (nl, "AMPl.dat");
strepy (n2, *aMP2.dat");
strcpy (n3, "AMP3.dat");

init_matrix{matrix, imax):
initial (coef, imax, xstep, abp, nonl, gain, delta, r, s, m);

while ( j*zstep <= zmax )
{
next (coef, matrix, abp, nonl, gain, delta, r, s, m, zstep,
imax, j, fnum);
if ( fabs(coef->g[1]1({01) > 10. )
{
printf("INSTABILTIY OCCURRED!\n"};
strcpy (dfile3, "INSTAB.dat");:
ltoa(j, strnum);
strcat (dfile3, strnum);
strcat (dfile3, *.dat");

if (( fptr3=fopen(dfile3, "w")) == NULL)
{ printf("COULD NOT OPEN *.dat");
exit (0); }
for (n = 1; n<= filout; n++)
{ fprintf (fptr3, "J=%1d\tN=%d\n", i, n);

for (i = 0; 1 < imax; i++)
fprintf (fptr3, "G(%d,%d)=%.3le\t
H(%4, 3%d)=%.31e\n*, n, i,
coef->g[n]}[i]l, n, i, coef->hinl{il):
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}
fclose(fptr3);

}
if ( (fmod( (float)j, 5.) == NULL) )
{

profile(coef, s, m, 3j);

/* WRITE DATA TO FILES */

/* 1st harmonic * /
n=1;
if (( fnl=fopen(nl, "a")) == NULL)
{ printf ("COULD NOT OPEN AMP.dat"):

exit(0); 1}
fprintf (£nl, "\n%1id *, j):

for ( eta = 0; eta < imax; eta++)

{
ampl=ampltud(coef->g[n]letal,
coef->h[nl [eta}, s);
fprintf(fni, “%.3le ", ampl);
} .
for ( eta = 0; eta < imax; eta++)
{
phl=phase (coef->g[n] [eta],
coef->h[n] [etal,s,n,eta,xstep);
fprintf(fnl, "%.3le " , phl);
}
fclose{fnl);
/* 2nd harmonic */ ‘n=2;
if {( fn2=fopen(n2, "a")) == NULL)
{ printf ("COULD NOT OPEN AMP.dat");
exit (0); }

fprintf (£n2, *\n$ld “, 3j);

for { eta = 0; eta < imax; eta++)
{
ampl=ampltud(coef->g[n][etal,
coef->h[n][etal, s);
fprintf(fn2, “"%.3le ", ampl);

for ( eta = 0; eta < imax; eta++)
{
phi=phase{coef->g(n] [etal,
coef->h[n}letal,s,n, eta,xstep);
fprintf(£fn2, "%.3le " , phl);
}
fclose(fn2);

/* 3rd harmonic */
n=3;
if (( fn3=fopen(n3, "a")) == NULL)
{ printf (*COULD NOT OPEN AMP.dat");
exit (0); }
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fprintf (£n3, "\n%ld *, 3j):

for ( eta = 0; eta < imax; eta++)

{
ampl=ampltud(coef->g[n] [eta],

coef->h[n] [etal, s):
fprintf(fn3, *"%.3le ", ampl):
}
for ( eta = 0; eta < imax; eta++)
{
phl=phase(coef->g[n] [etal,
coef->hin] [etal),s,n,eta,xstep);
fprintf(fn3, "%.3le " , phl);
}
fclose(£fn3);
/* END WRITE DATA TO FILES */
k++;
}
F4+; /* next axial step */
}
}
#include <stdio.h>
#¢include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "mystruct.h"
void next () ;
/***********************************************************
* NEXT *
***********************************************************/
void next (coef, matrix, abp, nonl, gain, delta, r, s, m, zstep, imax, 3J,

fnum)

CfsStruct *coef;

MxStruct *matrix;

double abp, nonl, gain, delta, r, s, zstep;
double fnum;

int imax;

int m;

long int 3j;

{

double *gfn, *hfn, *gnew, *hnew;
double norm, mag;

int 1, lmax=20;

int i, n;

double c2;

double eps, fact;

char dfile6[20];
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FILE
char
FILE
char
FILE
char

*fptré;
dfile7({20]};
*fptr7;
dfile8([20];
*fptr8;
snum{5];

double sumg();
double sumh():
double mult();
extern void ltoa();

gfn = (double *)calloc (501, sizeof (double));
hfn = (double *)calloc(501, sizeof(double));
gnew = (double *)calloc(501, sizeof(double));
hnew = (double *)calloc (501, sizeof (double));
if ( gfn==NULL || hfn==NULL || gnew==NULL || hnew==NULL)
{
printf("****** error callocing in NEXT.C **#***x**xxxu);
exit (0);
}
strcpy (dfile6, "ITER.dat"); y
if ( (fptré = fopen(dfile6, "a")) == NULL)
; .
printf(n******%x Error in FILE I/O in NEXT.C *****");
exit (0);
}
for (n = 1; n <= m; n++)
{
c2 = (zstep*n*nonl)/4;
for (i = 0; i < imax; i++)
{
gfn{i] = coef->ginl}[i] + c2*sumg(coef,n,m,1i);
hfnl[i] = coef->h[n][i] + c2*sumh(coef,n,m,i);
gnew({i] = coef->gln]ii];
hnew{i] = coef->hin]{il;
}
1l =1;
fact = 1./( l+pow((double)n, fnum)*zstep*nonl/(2*gain) );
norm = 1.;
eps = l.e-5;
while (norm >= eps && 1 <= 30)
{
for (1 = 0; 1 < imax; i++)
{
gnewl[i] = fact*(gfn{i]l+r*mult(matrix, imax, hnew,
i)/{4*n));
}
for (i = 0; i < imax; i++)
{
hnew([i] = fact*(hfn{i)-r*mult (matrix, imax, gnew,
i)/(4*n));
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}
norm = 0.;

for (i = 0; i < imax; i++)

{
mag = fabs( gnew[i] - coef->g[n]l[i] );
if (mag > norm)
norm = mag;
coef->g{n][i] = gnewli];
coef->hinl{i] = hnew(il};
}
l++;

}

if (1 > lmax)
fprintf (fptré, "J = %l1d\tHarmonic
NORM = %le\n", j, n, 1, norm};
/*printf ("NEXT.c:\t G(%4,0) = %.3le\t H(%4,0) = %$.31le\n",
n, coef->g(nl {0}, n, coef->h[n}[0]}); */

i

g$d\tIteration = %d\t

)

fclose(fptr6);
free (gnew);
free (hnew) ;
free(gfn);
free(hfn);

}

/***********************************************************

* SUMG *
***********************************************************/
double sumg(coef, n, m, i)
CfStruct *coef;
int n, m, 1i;
{
int inx;
double sum;

sum = 0.;
for (inx = 1; inx <= (n - 1); inx++)
sum = sum + coef->g[n - inx][i]l*coef->g{inx][i] -
coef->h[n-inx] [i] *coef->h[inx] [i];
sum = sum/2;
for (inx = m; inx >= (n+l); inx--)
{
sum = sum - coef->glinx-nl[il*coef->glinx][i] -
coef->hlinx-n] [i]*coef->h[inx]{i};
}

return(sum) ;

/***********************************************************
* SUMH *
***********************************************************/

double sumh(coef, n, m, 1i)
Cfstruct *coef;
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int n, m, 1i;
{
int inx;
double sum;

sum = 0.;
for (inx = 1; inx <= (n - 1); inx++)
{

sum = sum + coef->g[n - inx][il*coef->h[inx][i] +
coef->hin-inx] [i] *coef->g{inx] [i];
}
sum = sum/2;
for (inx = m; inx >= (n+l); inx--)

{
/* printf ("SUMH:\t N = $d\t INX = 2%d\n", n, inx);
* / sum = sum + coef->h[inx-n][i])*coef->glinx]{i] -
coef->g[inx-n] [i]*coef->h{inx]{i];
}

return (sum) ;

/***********************************************************

* MULT *
***********************************************************/
double mult (mx, imax, x, i)
MxStruct *mx;
int imax, i;
double *x;

{
double mt;
/* if (1 <« 1 11 1 > imax)
{
printf ("NO WAY:\t I = %d\n", i);
mt = .1le20;
}

else */ if (i == 0)
mt = mx~->diag{il*x{i] + mx->betal[i]l*x[i+1l];
else if (i == (imax-1))
mt = mx->alfa[i]*x{i~-1] + mx->diag[i]*x[i];
else
mt = mx->alfaf{il*x[i-1] + mx->diagli]l*x[i] +
mx->beta(il*x[i+1];
/*printf ("MULT:\t I=%d\tALFA = %.3le\t BETA = %.3le\t DIAG = %.3le\n", i,
mx~->alfaf{i], mx->betali], mx->diagl[i]); */
return(mt) ;

}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "mystruct.h"

void initial (coef, imax, ustep, abp, nl, gain, delta, r, s, m)
Cfstruct *coef;
int imax, m;

63



double abp, nl, gain, delta, r, s, ustep;

{

double
‘double
extern
extern

int i,
double

char d
FILE *

delta)

delta)

}

/*******************************************************************

*

*******************************************************************/

double

{
double

iniamp();
iniphase():
double ampltud();
double phase();

n;

u;

filed [20];
fptréd;

strepy (dfiled, "INITIAL.dat");
l'w") )

NULL)

if (( fptrd = fopen(dfiled,

{
printf ("Could not open %s", dfiled);
exit (0);

}

for (i = 0; 1 <= imax-1; i++)

{

u = i*ustep;
coef->gll][i}]

yi

coef->h{11[i]
)

iniamp(u, delta, gain)

iniamp(u, delta, gain)

* cos(iniphase(u,

* gin(iniphase(u,

fprintf (fptr4, "%.3le\t %.3le\n", ampltud(coef->g{l][i],
>h[1)[i]), phase(coef->g[1][i], coef->h[1l]l[i], s, n, 1, ustep));

for (n = 2; n <= m; -

{
coef->g[n] [i]
coef->h(n] [i]
}
}
for (i = 1; i <= m; 1i++)
{
coef->g{i] [imax] =
coef->h{i] [imax] =
}

fclose(fptrd);

INIAMP ()

iniamp (u, delta,'gain)
double u, delta, gain;

ampl;

if (u < -1. 1l u>1.)
ampl = 0.;

else

1.;

ampl

n++)

0.;
0.;

’

!

*

coef-



return{ampl) ;

/-k******************************************************************

* INIPHASE () *
*******************************************************************/
double iniphase(u, delta)
double u;
double delta;
{
double pe;

pe = 0.;
return(pe);

}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "mystruct.h"

void init_matrix(mx, imax)
MxStruct *mx;

int imax;
{
int i,k; '
mx->diag{0] = -4.;
mx->alfal0}] = 0.;
mx->betal[0] = 4.;
for (k = 1; k <= (imax - 2); k++)
{
mx->diaglk] = -2.;
mx->alfalk] = 1. - 1/(double) (2*k);
mx->betalk] = 1. + 1/(double) (2*k);
}
mx->diag{imax-1] = -2.;
mx->alfalimax-1] = 1. - 1/(double) (2* (imax-1)):
mx->beta[imax-1] = 0.;
}

#include <stdio.h>
#include <stdlib.h>
#include <math.h>
#include <malloc.h>
#include "mystruct.h"®

void profile(coef, s, m, J)
CfStruct *coef;
double s;
int m;
long int 3j;

{

double sum;

double step:

int i, n;

char dfile[301};
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FILE *fptr;
char nstr{5];
extern void ltoal();

strcpy(dfile, "PROFILE") ;
/* ltoa(j., nstr);
strcat (dfile, nstrj);

*/
strcat (dfile, ".dat");
if ( ( fptr = fopen(dfile, "a")) == NULL) {
printf ("ERROR OPENING PROF.dat");
exit(0);
}
fprintf(fptr,"%1ld ", J);
step = asin(l.)/50;
for (i = ~100; 1 <= 100; i++)
{
sum = 0;
- for (n = (m-2); n >= 1; n--)
sum = sum + coef->g[n](0)*sin(step*i*n)/s +
coef->h[n] [0)*cos(step*i*n)/s;
fprintf (fptr,"%.31le “, sum);
}
fprintf (fptr,"\n");
fclose(fptr);
}
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