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ABSTRACT

There has been recent interest in the utility of tissue motion analysis as a
tool for sonographic tissue characterization. An important step in this process is
the estimation of soft tissue motion from speckle motion in ultrasonic B-mode
images. Because there is an imperfect correspondence between speckle motion
and tissue motion, there is an associated uncertainty in quantitative estimates of
tissue motion derived from speckle images. In this thesis, the variation of this
uncertainty is studied as a function of tissue displacement, tissue type, and size of

region of interest.
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1. MOTIVATION AND BACKGROUND

1.1 Introduction

In diagnostic ultrasound the viscoelastic response of soft tissue has been
used to characterize its physiological state [1-5]. Quantitative estimates of tissue
compressibility, elasticity, lesion mobility and other viscoelastic properties of tis-
sue are largely based on the accurate estimation of tissue displacements [6,7]. In
evaluating tissue motion, quantitative estimates of viscoelastic tissue parameters
are often compared with normal ranges [8]. Thus, it is essential to know the
uncertainty associated with estimates of these parameters. The question we
address in this study is how well speckle motion in ultrasonic images corresponds

to actual tissue motion.

Preliminary studies have shown that there is a general inverse relation
between the correspondence of speckle motion to tissue motion and applied
deformation [9,10]. In this study, one of the goals is to quantify the limitations of
the speckle tracking representation of tissue motion. The 1'esuits of this thesis

show how the imperfect correlation between speckle motion and tissue motion
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affects the uncertainty in quantitative estimates of soft tissue motion. In addition,

-

: we will see how the uncertainty in motion estimates varies as a function of dis-
__ placement, tissue type and size of region of interest. The results may help quan-
tify the uncertainty associated with estimates of tissue strain and elasticity in tis-

sue undergoing external deformation or graded compression.
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2. THEORETICAL MODEL

2.1 Estimation of Tissue Motion via Time-Domain
Correlation

An image can be represented by a two-dimensional array. In this case, each
location in the arra& contains the intensity of a pixel in the image. (An image can
also be viewed as a one-dimensional array if the rows of the two-dimensional
array are concatenated to form a line). To estimate interframe motion between a
pair of images represented by arrays A and B, the following time-domain correla-
tion technique has been used. A rectangular region of interest (ROI) X is selected
from image A. The ROI can be considered a subarray of A. A template region Y,
with the same dimensions as X, is moved over all possible locations in image B.
At each position a normalized correlation coefficient between X (the ROI in
image A) and Y (the template in image B) is coniputed. A normalized correlation
coefficient for discrete time functions can be computed using ‘E:quation (1) [11-

14]:
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Here x; ; represents the pixel intensity inside of the ROI at coordinates (i,j)
(=0, j=0 is the origin, or bottom left corner of the rectangular ROI), y;.ix e
represents the pixel inténsity at position (i+k,j+1) in image B, (k,1) specify the
coordinates of the origin of the template in the image B, and x and y denote the
average pixel values in the ROI and in the template. Using this technique, the
new position of the origin of the ROI X is assumed to be the position (k1) in

1mage B that produces the peak correlation coefficient.

2.2 Limitations of the Time-Domain Correlation Technique

The time-domain correlation technique presumes that the tissue in an ROI
translates en-bloc, meaning that every pixel in the ROI is translated by the same
amount in the axial and lateral directions. This technique does not account for
rotations or deformations (expansion or compression) of tissue and these are criti-
cal limitations. Despite this fact, the time-domain correlation technique does pro-
vide a rough estimate of tissue motion. Because the ﬁormali'zed correlation

coefficient is a measure of similarity (or linear relatedness), the time-domain



K

Y

e

correlation technique does account for uniform distortions of intensity. If the
pixel itensity x;; of every pixel in an ROI X is distorted by an equivalent noise
intensity z, the performance of the technique is not degraded. That is, the dis-
placement of the ROI can still be tracked exactly (pyy = 1.0). This is because the
distorted ROI remains linearly related to the original ROL Optical flow tech-
niques exist that allow for off-line estimation of rotational and deformational
components of motion [15]. However, one of the major advantages of the time-
domain correlation technique is in its comparative computational efficiency. This
technique has been implemented for measurement of blood flow and tissue
motion in real time [16-17]. This makes the technique especially valuable for

clinical application on-line.

2.3 Interpretation of Normalized Correlation Coefficient

The normalized correlation coefficient provides a measure of how linearly
related two functions (or images) are. The normalization factor in the denomina-
tor of Equation (1) forces the correlation coefficient to take on values between
-1.0 and 1.0. If two images X and Y are linearly related by Y = cX, where c is a
constant, then the correlation coefficient for these images is =1.0. (The relation Y
= cX means that every pixel in the image Y is a scaled version of its correspond-

ing pixel in the image X).



A correlation coefficient of P,y = 1.0 denotes exact similarity (but does not
necessarily mean the images are identical). Consider two images with pixels
identically distributed about two different means. These images are clearly not
1dentical but are exactly similar and will produce a unitary correlation. A correla-
tion coefficient Py, = - 1.0 represents an image inversion. For this case, pixel
values x;; in the image X are distributed a distance |x;;— X | above or below X .
The corresponding pixeis Yij in the image Y are spaced by the same distance

from y but are in the opposite direction according to the relation

xij—x) == =y) 2)
Thus the image Y is identical to the image X, but is distributed and flipped about
its mean y . In other words, Y is the mirror image of X. Negative correlation

coefficients are generally not useful in measuring similarity. In this sense, any

positive correlation represents a greater similarity than any negative correlation.
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3. EXPERIMENTAL METHODS

3.1 Estimation of Calibrated Motion

3.1.1 Acquisition of image sequences

Sections of porcine longissimus muscle and porcine liver were obtained
from the Meat Sciences Laboratory, in the Department of Animal Sciences, at the.
Univer;ity of Ilinois. The porcine samples were obtained within 24 hours of
death. The porcine liver and muscle were vacuum sealed. All measurements were

made at room temperature (72 degrees F).

Ultrasonic images of rabbit tissue containing a VX2 carcinoma and human
fetal lung tissue were obtained on standard VHS videotape from the Department
of Radiology, School of Medicine at the University of Michigan. These images
were used to help validate the time-domain correlation technique which is

described in Section 3.2.




Samples of porcine liver, porcine muscle and woolen sea sponge were

placed in a water tank and secured on top of sound absorbing (SOAB) slabs.
Ultrasonic B-mode sector scans were obtained using a 5 MHz ATL transducer
and an ATL MK 500 Ultrasonic Imager (Fig. 1). The ATL transducer “was
attached to the robotic arm of a Daedal motorized positioning system. The scan-
ning plane of the transducer was aligned with one of the Daedal positioning axes
by focusing on a thin ﬁbérglass rod of radius 0.5 mm. The rod was submerged at a
depth of 5.0 cm, the focal distance of the transducer. At this distance the
beamwidth of the transducer is minimal and this allows for the tightest possible

focusing.

In thisb study only en-bloc translations of samples were considered. That is,
the time-domain correlation techniqﬁe was used to estimate the incremental dis-
placements of a selected ROI presuming that the dimensions of the ROI do not
change. This accounts for translational motion of an ROI, but not for deforma-
tions in shape. The effects of shape deformations and vibrational motion have
been reserved for future study. For porcine liver, porcine muscle and sponge,
axial translations between 1.0 mm to 10.0 mm were executed using using a
Daedal motorized positioning system, which has a precision of = 1.0 wm for

axial and lateral motions. Translations were executed in 1.0 mm increments.

After each 1.0 mm translation, an ultrasonic B-mode scan was digitized and

saved using a Targa 16 frame grabbing system and a Compaqi 386 computer.
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Digitized image sequences were acquired for the porcine liver, porcine muscle
and sponge samples. Motion was computed by estimating interframe motion
(motion of samples between adjacent frames) and net motion (motion of samples

between noncontiguous frames).

3.1.2 Estimation of interframe motion

To estimate interframe motion, a rectanguiar ROI was selected from the first
frame of each sequence. The position and thus motion of the ROI was tracked
through the image sequence in the following progressive manner. The motion of
the ROI was tracked from its known starting position (i1,j1) in frame 1 to a posi-
tion (i9,jo) in frame 2 using the time-domain éorrelaﬁon technique. Position
(i;,J;) denotes the coordinates of the origin (bottom left corner) of the ROI in
frame z. The ROI was then tracked from position (i9,j7) in frame 2 to (13,/3) in
frame 3 and so on (Fig. 2). This procedure was continued until the ROI was

tracked to its final position (iy,jx) in frame N.

Using this technique, the position of the ROI is then known for each frame
in the sequence. The net sample displacement can then be estimated between any
two frames q and r in fhe sequence. As will be shown in Sectign 4.1, this turns

out to be much more accurate than directly correlating two frames q and 1, in

_estimating the net sample displacement between noncontiguous frames.
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Fig. 2. Tracking the interframe motion of an ROI



3.1.3 Search region

For each frame to frame correlation, a search area was specified. A search
area containing the eﬁtire image could have been specified, but a ﬂéaﬁng (mov-
ing) search area was used. Correlation—based séarches sometimes detect false
areas in an image which produce high correlation with specular reflectors, but are
actually artifacts. To filter out some of these artifacts, it was assumed that if the
elapsed time between frames was small, no section of tissue could translate more
than a distance of M mm (or pixels). Translations were executed in increments of
1.0 mm, which corresponds to M = 5 pixels. The floating search area for a specu-
lar reflector or ROI in frame i consisted of the position and dimensions of the ROI
in frame i-1, padded by M=10 pixels (or roughly 2.0 mm) in a]l‘ directions (Fig.
3). This preve;lted searches in regions of an image which contained known

artifacts.

The time-domain correlation algorithm was implemented by programs writ-
ten in C language and run on Sun Sparc 330 and Sun Sparc 2 workstations. As a
preliminary step, each sequence of images was first converted from standard RGB
(Red-Green-Blue) color format to a 32 level grey scale format with a desired
weighting function. In this case, the primary colors, red, green and blue were
weighted equally. In RGB format, each pixel is represented by' some percentage

of each of these colors. That is, each pixel in an RGB image has a red intensity,
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Fig. 3. Floating search region
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green intensity and a blue intensity. To convert the RGB images to grey scale,
these intensities were simply summed and averaged. Under this uniform weight-
ing scheme, each of the primary colors is presumed to contribute an equal amount
of brightness to the image. The converted images were then correlated in the-pro-
gressive manner described above and the intermediate and final correlation

coefficients and positions were saved.

3.2 Validation of the Time-Domain Correlaﬁon Technique

To validate the time-domain correlation technique, ultrasonic images of
VX2 rabbit carcinoma, human fetal lung tissue, porcine liver, porcine muscle and
woolen sea sponge tissue were digitized and saved. Rectangular ROIs with
dimensions ranging from 5.0 mm by 5.0 mm to 40.0 mm by 40.0 mm were
selected from images of each of the above tissues. A copy of each image was first
generated. Each image was then correlafed with itself. Rectangular regions were
selected for convenience. More general geometries could be selected with
appropriate modifications to software. In each case, the ROI was exactly tracked
with a correlation coefficient of 1.0 and no change in position. This was exactly
what was expected since frame 2 was a copy of frame 1 in each case and the ROI

did not move.
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Next, the time-domain correlation technique was used to track lesion areas
in Aall of the above tissues and the results corresponded very well with those for
visual comparison (lesion areas were tracked visually and when the time-domain
correlation estimates of lesion motion were overlayed they appeared to fall on the
centroids of the lesion areas). In addition, the time-domain correlation algorithms
were used to exactly track the motion of a sequence of simple computer-
generated images with correlation coefficients of 1.0. To help validate the pro-
gressive tracking software algorithms, the ROIs were tracked through a sequence
of scans of the rabbit, fetal lung and porcine tissues in both the forward and
reverse directions. (In the reverse direction the ROI was tracked from the end of
the sequence back to the original frame.) For each sequence ROIs were tracked
from a position (x1,y 1) in frame 1 to a position (xy,yy) in frame N. The ROIs
were then tracked in the reverse direction from position (xy,yy) in frame N to
position (X1,y;) in frame 1 as expected. The results helped to verify that the pro-

gressive tracking software algorithms were implemented correctly.

3.3 System Noise

3.3.1 Ambient noise

To obtain a measure of the ambient noise in the system, the motion of a sta-

tionary ROI was tracked through a contiguous sequence of B-mode images. This
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was done for 3 ROIs of different areas in porcine liver tissue and repeated for
both porcine muscle tissue and sponge. In the absence of noise, the peak dis-
placement of the ROI should be zero with a corresponding correlation coefficient
of 1.0. In every case the actual peak displacement was found to be 0.0 mm for all
samples. The mean correlation between consecutive images of stationary ROIs in

all samples was 0.9960.

3.3.2 Resolution

The image resolution defines the smallest unit of motion. The resolution for
tracking is 1 pixel length in the axial and lateral directions. Using 1 cm display
markers on ultrasonic B-mode scans and the speed of sound in liver, muscle and
water, a pixel to millimeter conversion ratio was computed for each tissue type.
The finite resolution of B-mode scans (there are a finite number of pixels in each
ultrasonic B-mode image) contributes to the uncertainty in estimates of tissue

motion.
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3.4 Uncertainty and Precision of Tissue Motion Estimates

3.4.1 Computation of relative uncertainty

The uncertainty in estimates of tissue motion for a given displacement were

computed according to the relations:

displacement = \/]xi—x‘ |2+ |yi— ¥ |2 3

uncertainty = \/ |x,-+1— X |2+l)’i+1— y |2 )

uncertainty
displacement

4

relative uncertainty = 100

Here, (x; y;) represents the initial position of the origin of an ROL (X, ¥ )
represents the actual (known) position of the origin of an ROI after a translation is
executed, and (x;4; y;41) represents the tracked position of the origin of an ROI

after a translation is executed.

The uncertainty for a motion estimate is defined as the geometric distance
between the actual final position of the ROI and the tracked final position of the
ROL It is a measure of the total error in the time-domain correlation technique
due to noise and resolution. For each motion estimate, the unceﬂainty of that esti-

mate represents a range of values around the estimate, in which the true value
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may lie. In this case the true value is the known or actual tissue displacement.
More specifically, for a given time-domain correlation estin.late of a tissue dis-
placement, the known tissue displacement should either be equal to the time-
domain correlation estimate, or should fall within the range of uncertainty for that

estimate.

Geometrically, the range of uncertainty for a motion estimate can be visual-
ized as a circle centered.about the estimate (Fig. 4). In general, as will be shown,
as the known displacement increases, the range uncertainty for motion estimates
increases. This can be visualized as larger and larger cﬁrcular regions of uncer-
tainty centered about the motion estimate. The relative uncertainty represents the
uncertainty in an éstimate of a tissue displacement normalized with respect to the

actual displacement. .

3.4.2 Computation of precision

For an actual displacement d, the precision of tissue motion estimates is

defined by

Dd T 6)

.

In Equation (6), ly and O, represent the mean and standard deviations of

estimates of tissue displacements. The precision is a measure of the
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malized variance between estimates of tissue displacement.

20

reproducibility of the time-domain correlation technique. It represents the nor-



4. RESULTS

4.1 Validation of Interframe Motion Estimation

To help validate the estimation of interframe motion discussed in Section
3.1.2, tssue displacements and sponge displacements were estimated by applying
the time-domain correlation technique in two ways. First, motion between non-
contiguous frames was estimated by tracking the motion of samples through inter-
mediate frames. Second, motion between noncontiguous frames was estimated by
directly correlating the noncontiguous frames. The uncertainty in time-domain
correlation estimates of tissue displacement and sponge displacement is compared
for these two methods in Figs. 5a-5c. Motion estimates, found by directly corre-
lating noncontiguous frames, produced relative uncertainties exceededing 50%
within 3.0 mm. Motion estimates, based on tracking motion in intermediate
frames, produced approximately constant relative uncertainties on the order of

20% (Figs. 6a-6c).
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4.2 Uncertainty of Motion Estimates

4.2.1 Porcine liver, porcine muscle and sponge

The uncertainty in motion estimates increases linearly as a function of actual
sample displacement. This trend is illustrated in Fig. 7 for liver tissue, muscle tis-
sue and sponge. Muscle-tissue contains the greatest amount of internal structure
[18]. As a result, ultrasonic B-mode scans of muscle tissue display greater texture
than more homogeneous tissues [19] (in this case liver tissue or sponge). Thus, it
is not surprising that motion estimates in muscle exhibit the smallest uncertain-
ties. Motion estimates in all three samples produce relative uncertainties on the
order of 20% (Fig. 8). This equates to an uncertainty of about 0.2 mm per mm for

actual sample displacements less than 10.0 mm.

4.2.2 Variation of region of interest size

For liver tissue, muscle tissue and sponge the uncertainty in motion esti-
mates increases for smaller and smaller regions of interest. In Figs. 9a and 9b the
uncertainty in motion estimates is shown for ROIs with dimensions of 15.0 mm
by 15.0 mm, 20.0 mm by 20.0 mm and 30.0 mm by 20.0 mm, in liver and muscle
tissues. This corresponds to areas of 4900, 10,000 and 15,000 square millimeters

respectively. The ROIs were selected so that they were all concentric. That is,
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the centroids of the ROIs are all at the same coordinates to ensure that roughly the

same section of tissue is tracked.
4.3 Precision of Motion Estimates

4.3.1 Porcine liver, porcine muscle and sponge

The precision of motion estimates in liver tissue was found to be less than
0.07 for known sample displacements of less than 10.0 mm. This equates to devi-
ations between motion estimates of at most 7% relative to mean motion estimates.
The precision of motion estimates was found to be no worse than 2.1% for muscle
tissue and 3.2% for sponge. Again, since muscle tissue contains the greatest
amount of internal structure, it is not surprising that motion estimates in muscle

tissue exhibit the highest precision.

4.3.2 Variation of region of interest size

The precision of motion estimates was computed for ROIs with dimensions
of 15.0 mm by 15.0 mm, 20.0 mm by 20.0 mm and 30.0 mm by 20.0 mm, in liver
tissue, muscle tissue and sponge. This corresponds to areas of 4900, 10,000 and
15,000 squafe millimeters. For all samples, the precision of motion estimates

deteriorated as ROIs with smaller dimensions were selected (Figs. 10a-10c).
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5. DISCUSSION

5.1 Interframe Motion of Samples

The problem of estimating the motion of soft tissue structures from two
ultrasonic B-scans taken at times £ and #, was examined. Motion estimates,
based on tracking sample motion in intermediate frames, were observed to be
significantly better than estimates based on directly correlating noncontiguous
frames. It appears that the more intermediate scans (B-scans taken between times
t1 and t,) that are available, the lower the uncertainty will be in time-domain
correlation estimates of sample or structure motion. It appears to be easier to track
soft tissue structures over smaller distances and through a larger number of
frames than to track them over larger distances and fewer frames. This is a sim-

ple and potentially very useful rule of thumb to keep in mind.
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5.2 Dependence of Uncertainty on Tissue Type,
ROI Size and Actual Sample Displacement

Motion estimates in liver tissue, muscle tissue and sponge produced relative
uncertainties in the range of 10% to 20%. Porcine muscle, which contains the
greatest internal structure, produced ultrasonic images with the greatest texture
and lowest uncertainties. Liver tissue, which is largely homogeneous in structure,
produced the greatest uﬁcertainty in motion estimates. There appears to be an
inverse relation between the size of a region of interest and the uncertainty in
corresponding motion estimates. Based oﬁ our limited data it appears that while
uncertainties in estimates of tissue motion improve for tissue that exhibit greater
structure or texture, they deteriorate for smaller and smaller size ROIs, indepen-
dent of tissue type. The uncertainty in motion estimates increased linearly at a
rate of roughly 0.2 mm per mm, with actual sample displacement for liver tissue,
muscle tissue and sponge. This result seems reasonable since motion estimatgs
were based on tracking motion in intermediate frames. This being the case, the
motion estimate for a sample displacement d, > d is partially dependent on the
motion estimate for a sample displacement of d; and uncertainty in motion esti-

mates cannot and should not ever improve with displacement.
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5.3 Dependence of Precision on Tissue Type,
ROI Size and Actual Sample Displacement

The time-domain correlation technique produces motion estimates with high
precision (less than 1% normalized deviation between estimates for a region of
interest with area of at least 100 square centimeters). The exactness of motion
estimates using this technique appears to be independent of tissue type. However,
the precision of the technique becomes degraded as the size of the region of

interest is reduced. This is true for all three sample types.
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6. CONCLUSIONS

This thesis has ad&essed the specific question of how the imperfect correla-
tion between speckle motion and tissue motion affects estimates of tissue dis-
placement, particularly in terms of the uncertainty and precision of such esti-
mates. Quantitative estimates of tissue strain and elasticity, which are based on
estimates of tissue displacement, may be limited by uncertainties on thé order of
20%. These uncertainties should decrease for tissues that are highly structured
and might increase for more homogeneous tissues. It appears that selection of a
large region of interest should help reduce uncertainties from estimates of tissue

displacement.

Only en-bloc translations of tissue have been considered. That is, no defor-
mations in shape were applied to the ROIs. It would be worthwhile to study the
uncertainty in estimates of tissue motion for tissue undergqing graded compres-
sions and external vibrations. Also of interest may be the effect of ;electing ROIs

containing a border or edge between two different tissue types. Even more exact
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results can be obtained with the use of new contrast-detail phantoms [20]. Also of

particular interest is the fact that signal processing techniques, applied to M-mode

signals, have been developed that may allow for vastly improved depth resolution

and measurement of tissue displacements with precision as good as 0.1 mm {21].

It is important to understand the quantitative limitations of estimates of soft tissue

motion since calculation of tissue strain and tissue elasticity, which remain impor-

tant parameters in evaluating mechanical properties of tissue, are largely based on

the accurate estimation of tissue displacement.
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